
Computer Science
Ja aEnabled

Indnw Mevenn
RI1:IlanlID1lC$

Computer Science

Richard Jones:
Cambridge, New Zealand

Andrew Meyenn:
Wesley College, Melbourne,
Australia

Copyright ©IBID Press, Victoria. First published in 2004 by IBID Press, Victoria,
c r) Published by IBID Press, Victoria.

~ Library Catalogue:

Jones, R & Meyenn, A.
1. Computer, 2. International Baccalaureate. Series Title: International
Baccalaureate in Detail

ISBN: 187659041

All rights reserved except under the conditions described in the Copyright Act 1968 of
Australia and subsequent amendments. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the
prior permission of the publishers. First impression 2002.

While every care has been taken to trace and acknowledge copyright, the publishers
tender their apologies for any accidental infringement where copyright has proved
untraceable. They would be pleased to come to a suitable arrangement with the rightful
owner in each case.

All possible endeavours have been made by the publishers to ensure that the contents of
this resource are correct and appropriate. However, the Publishers accept no
responsibility for any errors made by the authors. The contents and materials are solely
the responsibility of the authors.

This book has been developed independently of the International Baccalaureate
Organisation (IBO). The text is in no way connected with, or endorsed by, the IBO.

Cover design by Adcore.

Published by IBID Press, 36 Quail Crescent, Melton 3337, Victoria, Australia
Printed by Shannon Books, Victoria, Australia.

ii

Computer Science

ANDREW'S DEDICATION

Dedicated to my wife Cathie and my daughter's Lisa and Nicola for their love and to my
father and mother for their support.

RICHARD'S DEDICATION

Dedicated to the memory of Marion Jones, my mother and my first teacher.

III

PREFACE TO SECOND EDITION

Richard Jones became interested in computer programming while studying for his M.Sc.
in Marine Earth Science at University College, London in the 1970s where there was a
requirement for all postgraduate students to take a FORTRAN IV course and produce
programs using offline card punches. He currently lives in Karapiro Village, Cambridge,
New Zealand. Richard has been teaching IB Computer Science for 13 years and
also holds an M.A. Ed. from Bath University, UK and a Postgraduate Certificate in
Online Education from the University of Southern Queensland.

Andrew Meyenn began studying computer science in 1971 and began teaching computer
science at Dickson College in Canberra, Australia in 1977. In 1982 he moved to the
computer industry. He is currently head of the LT. learning area at the Prahran campus of
Wesley College, Melbourne, Australia. He has taught the IB computer science course
since 1994. He has worked at the University of Melbourne in the Information Systems
department. Andrew holds the degrees of M.Ed. and M.Sc. from the University of
Melbourne. Andrew is also Deputy Director of the Australian Institute of Computer
Ethics.

Both authors are examiners in the IB computer science and Richard has run a number of
IB computer science workshops for teachers in his role as Deputy Chief Examiner.

Richard would like to acknowledge the support over the years of Glen Martin, former IB
Chief Examiner for Computer Science and Mike Towers, Director of Educational
Computing at United World College of South East Asia in Singapore. Thanks are also
due to the class of 2002, UWCSEA for feedback on early drafts of the manuscript. My
children James and Vicky (who both passed LB. Computer Science) have been most
supportive during the development of the book. Since the first days, my wife Hania has
encouraged me to take on projects that I might otherwise have let go - thank you for
believing in me.

Andrew Meyenn would like to thank the many students and colleges that assisted in the
process of compiling the text. He would also like to express his thanks to his family for
their support.

The authors were motivated to write the book to assist teachers across the LB. world and
to assist in establishing LB. computer science as a growing subject. There are a number
of general computer science texts, but until now there has not been one specifically
written for the LB. subject.

iv

Computer Science

The book is based on the LB. computer science syllabus. Teachers should be able to
follow the syllabus exactly and this will ensure that all aspects of theory are covered.
Exercise and practice questions are included that are of a similar nature to those found
in the exams. Answers to the exercises are obtainable as a free download from our
website: www.ibid.com.au

The algorithm sections are all written in JETS and all algorithms have been checked and
tested with computer programs. The authors, however, realise that mistakes may occur
and ask that teachers contact them if there are any concerns. The authors will make the
program code available for download as a package from the publisher's website http://
www.ibid.com.au.

Both authors would like to express their gratitude to the editors at IBID Press for their
support and helpful advice during the writing of this book.

v

CONTENTS

Introduction 2
1.1 Systems Life Cycle 2
1.2 Systems Analysis 9
1.3 System Design 13
1.4 Social Significance and Implications of Computer Systems 24
1.5 The Software Life Cycle 29
1.6 Software Design 31
1.7 Documentation 36
2.1 Program Construction in Java 40
3.1 Language Translators 132
3.2 Computer Architecture 140
3.3 Computer Systems 161
3.4 Networked Computer Systems 171
3.5 Data Representation 186
3.6 Errors 201
3.7 Utility Software 206
4.1 Number Systems and Representations 210
4.2 Boolean Logic 230
5.1 Terminology 254
5.2 Static Data Structures 262
5.3 Dynamic Data Structures 281
5.4 Objects in Problem Solutions 308
5.5 Recursion 315
5.6 Algorithm Evaluation 320
6.1 CPU Configuration 330
6.2 Disk Storage 334
6.3 Operating Systems and Utilities 337
6.4 Further Network Fundamentals 338
6.5 Computer/Peripheral/Communication 346
7.1 File Organisaton 356
8 The Case Study 374
9.1 The Dossier 392

vi

.--------
Chapter contents

Introduction 2
1.1 Systems Life Cycle 2
1.2 Systems Analysis 9
1.3 System Design 13
1.4 Social Significance and Implications of

Computer Systems 24
1.5 The Software Life Cycle 29
1.6 Software Design 31
1.7 Documentation 36--._-----

Computer Science

Software Development

INTRODUCTION
This topic is concerned with the development of computer systems from analysis through to
maintenance and documentation. Much of the focus is on the similar Software Life Cycle which
is considered a part of the overall process.

From an IE point of view, the Computer Science Program emphasizes the problem-solving
approach over simply coding solutions. The new curriculum has adopted the prototyping
approach as being more likely to succeed with students who often prefer a more practical
approach to a theoretical or abstract design methodology.

~6~~1.1 SYSTEMS LIFE CYCLE
This cycle involves the design and implementation of the complete system including such things
as software requirements, hardware requirements and any organizational re-structuring that might
be needed.

There are obvious similarities to the software development life cycle. For example, the process is
also not linear because systems, once developed, stay in place for many years. They have to be
adapted to reflect changes in the way they are used. So we again find that maintenance involves
making changes to an existing system, which requires analysis leading to a new design and so on.

© IBo 1.1.1 MAJOR STAGES
2004

The subject guide defines the major stages as: analysis, design, implementation, operation and
maintenance. Other terms can be used in the description of this process, but the emphasis should
be on its cyclical nature.

Analysis: this stage involves collecting and examining data, particularly about the user's
requirements and the flow of data through the existing system. A feasibility report may be
produced at this stage.

Design: at this stage the software and hardware aspects have to be clearly defined. File design and
selection of suitable data structures and algorithms are important. In an object-oriented design, a
modeling language such as UML might be used to define the objects and methods and the way
that data flows between them. With hardware properly identified, a more detailed feasibility
report can be produced at this stage, including a cost-benefit analysis.

Operation: if the decision to proceed with a solution is made then a number of items will be
produced. Among these is a plan for the development of a solution.

The planning of a major information system is a very complex process which is assisted by
identifying the discrete tasks which need to be completed. Two methods for this, GANTT and
PERT charts are discussed in Section 1.3.

Installation: there are several ways of undertaking the process of getting the completed system
up and running. These are discussed further in Section 1.2.7. Once the system is in operation,
there will be a further review and, perhaps, bugs will be noticed. This will need further analysis
causing the cycle to be repeated.

Maintenance: Bugs (errors), or worse, flaws in the initial design have to be fixed while the
program is in use. However, fixing a bug is a dangerous process as other bugs are likely to be
introduced. The maintenance process has been said to be "two steps forward, one step back ".

2

Computer Science

©IB01.1.2 DATA COLLECTION IN THE ANALYSIS PHASE
2004

There needs to be a clear picture of what the problem is and this is obtained by data collection.
Without thorough data collection, the problem cannot be identified correctly, leading to a poor
solution.

Data collection identifies:

• who inputs data to the system.

• what form the data is in.

• any validation that is needed.

• what processing is done to produce the required outputs.

This must be carried out in a thorough and systematic way or some vital aspect of the system may
be overlooked.

DATA COLLECTION TECHNIQUES©IB0 1132004 ••

The first phase of analysis is often termed 'fact-finding'.
existing system are to:

The classic ways to investigate an

• conduct interviews.

• carry out questionnaires.

• search existing documents.

• search the literature for other solutions to the same problem.

• observe people working with the existing system.

Each of these methods has advantages and disadvantages as outlined in the table below.

Method Advantages Disadvantages

More detailed data can be

Interview
gathered compared to a Time consuming, not easy to
questionnaire; interesting topics 'classify' or 'quantify' data.
can be pursued.

Many people can be reached People may not respond,
Questionnaire quickly. Results can be analysed questions cannot be clarified as

with numerical methods. they can be in an interview.

Study existing
The data required to be input The documents may not tell the

documents
and the outputs produced can be whole story without the people
identified. that use them.

Literature
May save work if the problem

The fine detail of the solutions
search

has been solved efficiently by
may not be given.

someone else.

May be able to find out things
Time consuming to carry out;

not apparent from interview or
Observation

questionnaire - observations not
the observer can subtly alter the

biased.
process.

It sould be apparent from this list that more than one method is usually applied to any given
problem.

3

Software Development

©IB01.1.4 THE REQUIREMENTS SPECIFICATION
2004

This document describes what the customer and developers expect the system to be able to do and
how it will be done. This must include all ofthe costs of building, testing and running the system
- both the hardware and software and the expected time to completion.

The requirements specification will include:

• a list of hardware and software tools that will be needed to produce the solution (see also
Section 1.2.1).

• descriptions of the functions of hardware and software in the completed system.

• a formal agreement on performance of the system.

• list of personnel and the tasks which will be allocated to them.

Following this, an organisational chart, such as a GANTT or PERT chart can be used to track
progress.

A GANTT chart is merely a list of activities plotted against time whereas a PERT chart shows
module dependencies as well.

The GANTT chart is useful for small scale projects such as an IE Computer Science dossier and
can help students to keep track of deadlines.

Activities

Problem statement

Problem analysis

Solution

Pseudo-code

Programming

Test and debug

Document

Project and Evaluation and Review Technique (PERT) shows events as nodes and activities as
lines joining them, with an expected time for each activity, typically in days.

Figure: 1.1

2
10

C

1 23 3 27
A F

12 E 8 12
B G

4 20
0

4

ALTERNATIVE SOLUTIONS

Computer Science

The minimum time to complete this project is 50 days (nodes 1,3 and 6). Any other path is
shorter. These nodes are said to lie on the Critical Path. PERT charts and calculation of the
critical path are not included as part of the IB Computer Science Programme.

~6~21.1.5 FEASIBILITY REPORT
When the requirements of a new system have been identified during the analysis phase it is
possible to produce a report which estimates the cost, identifies any expected benefits, estimates
how long the project will take and outlines any potential difficulties. This is known as a feasibility
report and, on the basis of this report, a decision will be taken as to whether to proceed to detailed
design.

If this decision is taken, the detailed requirements specification (above) will be produced. The
detailed requirements can be used to give an improved estimate of costs, benefits and difficulties
and this is also called a feasibility report. So a feasibility report can be produced during analysis,
design or both.

The report should also include an analysis of any risks (cost or technical) associated with the
project and should review other solutions which may have been produced in the past (these can be
found by a literature search). The level of detail in the report will depend upon how much detail
has been put into the design. If a detailed design has already been made, prototype screens can be
produced to show the user what the final system will look like. Prototyping is discussed further in
Section 1.5.

© IB0 1162004 ••

There are usually a number of different ways in which a given problem can be solved and this
may involve non-computer as well as computer systems solutions. One of the primary
considerations during development will be the output that the system produces. Output can be
presented in many forms as discussed in Chapters 3 and 8. Similarly a range of methods to
collect and input data can be used including the use of different interfaces (GUI, CLI) also
described in Section 1.3.6.

Other considerations might be to use a stand-alone or networked computer system. The software
itself could be one of the following three main types:

• General applications software; this includes word processors, spreadsheets, databases and
other 'office' packages which may be integrated. They are the least expensive option but
may not have all the features the development requires.

• Specific applications packages may have been written for the business; examples include
school administration, video tape rental outlets and medical practices. These packages are
more expensive than general applications packages and provide features that these
organisations will typically use.

• Tailor made software can be customised to do exactly what the customer requires. They have
to be written from scratch and therefore will be the most expensive and time-consuming
option.

5

Software Development

CLASS ACTIVITY
A family company runs a small store that already has a computerised stock control system using
a single pas terminal. They are now considering expanding into home delivery. They have
considered three systems:

1. A manual system; the customer telephones the store to place an order which is written
down on a record card. The order is assembled and delivered with a copy of the card and
the customer pays cash or with a cheque.

2. The existing system is used; when a customer telephones an order the goods are entered
into the POS terminal as if they were sold over the counter. The receipt is used to
assemble the order which is delivered as before.

3. A new system connected to the internet; customers can fill in an online order form and pay
by credit card. The goods are assembled and delivered with a copy of the online form.

Discuss the methods of fact-finding that you would consider most appropriate at the analysis
stage.

Compare these three systems considering:

a) The probable costs involved in purchasing hardware and software.
b) Requirements for extra terminals/network connections.
c) The time required to develop each solution.
d) Any possible effects on staff at the shop (see also Chapter 3).

Assemble your findings in a feasibility report for a technical audience.

Create a presentation illustrating your proposed solution which is suitable for the store owner.

Explain why more than one cycle of analysis and design might be needed.

••••••••••••••

~6~~1.1.7 SYSTEM TESTING
Students are expected to be able to discuss different methods of system testing. The
consequences of improper testing depend on what the system is supposed to do but obviously
there can be serious implications for an organization if the testing is not done properly. Perhaps it
is not too severe if a stock check system for a small shop fails; the users can always resort to
counting items by hand. However an air traffic control system presents the other end of the
spectrum: failure is not an option!

Systems usually go through several stages of developmental testing. In some development
methods users test the software at different stages of its development - a group of programmers
may examine an early version to see how it performs (alpha testing). Beta testing is used when
the product is nearly ready for release and the developers believe that there are few or no errors.
The software is released to users outside the company who can try it out in a range of different
environments. Credible companies always let the users know that the product is at the beta stage
and may not perform perfectly (see, for example, http://www.winzip.com).

There are formal methods of testing which attempt to 'prove' that software actually works using

6

Computer Science

theoretical or mathematical techniques. Any software above the very simplest programs you will
have produced in the first month of your course is too complex to be 'exhaustively' tested (see
below).

The process of testing a program involves both functional testing and testing with different types
of input data.

Functional testing involves describing systematically what is supposed to happen when buttons
are pressed on an event driven interface or menu choices are selected. If an AddRecord choice is
made, does the program go the subprogram dealing with adding records? Another way of
verifying an algorithm will actually work is to trace (or 'dry run' or 'desk check') it.

Test data is frequently categorised in the following ways. Suppose that there is a simple program
that accepts a person's percentage in an exam and gives an output that they have passed if the
percentage is greater than or equal to fifty or otherwise prints a 'fail' message. We can test that
input with:

Normal Data such as 23 or 56 will check to see if the pass and fail messages are properly
delivered. Data at the Limits should also be checked, for example 0, 49, 50,100 are all
examples of normal data at the limits as defined by our problem description.

Extreme Data will be outside the normal limits, -1, 104, 122 are examples. The user may not
type in such data because they're dumb, it's easy to hit a key accidentally or twice by mistake.

Abnormal Data will be the type of input data we really didn't except (in this case it could be data
that looks like a string and not an integer). A user may enter 'three', which seems unlikely, but
they could also hit the spacebar by mistake and enter '3 5', for example.

Thus a test plan for this program might be made up as follows:

Test data Type Expected response Actual response Debug?

23 N Fail message

56 N Pass message

° L Fail message

49 L Fail message

50 L Pass message

100 L Pass message

154 E Out of range message

-90 E Out of range message

thirty two A Not valid integer message

Notice that columns have been included to describe what happens when the actual testing is done
- the process of detecting, diagnosing and correcting errors in a program is known as
'debugging' .

Notice also that this represents systematic testing of entry into just one field, your final dossier
program may have scores of data entry points, all of which may need to be tested, so this is not a
trivial task.

7

Software Development

© IBO 1.1.8 METHODS OF IMPLEMENTING NEW SYSTEMS
2004

More detail of the social implications of the operation of systems and the development of new
systems will be discussed in relation to various case studies presented in Chapter 8. These
include training and a comparison of different methods of changing to a new system.

When a new system is introduced it will often mean changes in the way things are done. The
existing staff will need adequate training to use the new system. This creates a difficulty for the
company since these people still need to carry out their regular duties. The method of changeover
to the new system has an impact on opportunities for training.

Parallel running involves running the old and new systems together. This way it is possible to
confirm that both systems produce the same results and, should the new system develop any
faults, no data or 'up-time' is lost. It also provides an opportunity for users to be trained on the
new system and any mistakes they make are not too critical as the old system is still running. On
the other hand, there could be twice as much work for the operators to do!

With phased introduction, parts of the system can be implemented at different times. After each
part is tested and confirmed to work, the next part is introduced. This means that training period
is extended and also the new system will be introduced over a longer period of time. A similar
approach at, for example, a bank would be to introduce a 'pilot system' at one branch to see if
there are any problems before introducing it across the entire organisation.

Phased implementation and parallel running are difficult when the new system is a complete
replacement for the old one, and there is little overlap between the two.

In this case a direct changeover or 'big bang' may be made. In this case the users need to be
trained completely to use the new system before the changeover takes place. Clearly there are
risks associated with this type of changeover if the new system does not work correctly.

~6~21.1.9 MAINTENANCE
The proper maintenance of a system that has been released is expensive and time consuming. As
for testing and error correction, if the system has a modular design the processes involved in
making corrections to a system that is already running are made easier. The errors (bugs) are
easier to locate and fix. This kind of maintenance is known as 'corrective maintenance'.

Periodic reviews of the system will take place, these go through the same process of fact-finding
and analysis that was described earlier. The aim is to decide if improvements to the system can be
made and what the cost might be in terms of disruption to the operation of the existing system and
in financial terms.

The same methods of fact finding that were employed in the analysis stage can be used in the
maintenance phase to evaluate the performance of the new system (i.e. questionnaires, interviews,
observation, etc). This evaluation can be presented as a performance review and perhaps will
indicate opportunities and costs associated with further improvements to the system.

The types of documentation that are needed for computer systems; system (or technical)
documentation and user documentation are described in Section 1.6. As was mentioned earlier on
in this section, if technical documentation is poorly done, maintenance costs become very high
since programmers need to work very hard to understand the design decisions and other factors
involved in choosing the given solution.

8

Computer Science

EXERCISE 1.1
1. A graphic design company produces gift cards for special occasions. They are considering

a change from traditional drawing methods to use of a computer graphics application.

a. State three types of software the company could use.
b. Explain one advantage and one disadvantage of each type of software you

identified in a.
c. State three ways in which the new system could replace the old one.
d. Explain one advantage and one disadvantage of each way you identified in c.
e. Explain how the systems analyst could help the artists understand the ways in

which the new system could benefit them.

2. A hospital is introducing two new computer systems. One to handle stock control in the
kitchens and another to monitor patients in intensive care using a central workstation
receiving data from sensors attached to the patients.

a. Discuss the advantages and disadvantages of different methods of changing from
the old system to the new system in each of these cases.

b. Two data items for the stock control system might be the number of goods in stock
and the expiry date of the goods. Suggest suitable data for testing the data entry of
these items with reasons for each piece of test data.

c. State three items that would be included in a requirements specification for either
of these systems.

d. Compare the use of a CLI or GUI for the patient monitoring system.

...................
~6~21.2 SYSTEMS ANALYSIS

The purpose of systems analysis is to gain a clear picture of what the existing system does, what
data it uses to accomplish its task(s) and what outputs it produces. Without this information, very
little effective programming can be done.

© IBo1.2.1
2004

IMPORTANCE OF FORMULATING A PROBLEM
PRECISELY

There needs to be a clear picture of what the problem is because:

• there may be a team of people working on the problem - it has to be communicated to all of
them.

• the users of the problem must understand exactly what will be done - what changes it implies
for them.

• the costs of the project can be calculated and weighed against the (assumed) benefits - these
are written down in a feasibility report.

• the system can be tested properly - you cannot test a system if you don't know what it is
supposed to do.

9

Software Development

© IBO 1.2.2 ASPECTS THAT MUST BE CONSIDERED
2004

The first phase of analysis is often termed 'fact-finding'. The classic ways to investigate an
existing system are to:

• conduct interviews.

• carry out questionnaires.

• search existing documents.

search the literature for other solutions to the same problem.

• observe people working with the existing system.

Each of these methods has advantages and disadvantages which have been discussed in section
1.2.3.

The purpose of these investigations is to determine:

• what parts of the problem (if any) can be solved by computer.

• what other solutions have been tried in the past.

• what the costs might be.

• how much time it might take to complete the proposed system.

• roles and responsibilities of different parties in the development and construction of the new
system.

In examination questions, candidates can be asked to discuss these aspects (see the Class Activity
in Section 1.1.6 and Exercise 1.1)

~6~21.2.3 OUTCOMES OF INVESTIGATION
When the existing system has been thoroughly investigated and a range of possible solutions has
been identified a decision needs to be made as to which system is most suitable or even whether it
is worth making a change. Appropriate hardware and software need to be identified for a
particular problem.

If the decision to proceed with a solution is made then a number of items will be produced.
Among these is a plan for the development of a solution.

This topic is also discussed in relation to feasibility studies (Section 1.1.5).

The planning of a major information system is a very complex process which is assisted by
identifying the discrete tasks which need to be completed. See also Section 1.2.4.

© IBo 1 242004 •• PROBLEMS THAT CAN BE SOLVED USING
COMPUTER SYSTEMS

Many problems can be solved by computer, but not all are cost effective or technically feasible.

This may apply to hardware constraints:

• Is it feasible or cost-effective to have a robot replace books on shelves in a library system?

Will a local shop be able to afford a mainframe computer to handle stock control?

10

Computer Science

And the software:

• Does a suitable program or application already exist?

• Should an existing system of application forms be replaced by an onscreen data entry
system?

CLASS ACTIVITY
Consider teaching and learning as familiar activities (hopefully!). Some parts of the process have
been adapted to take account of developments in information technology whereas some parts
have stayed the same. The amount of technology-based education clearly varies from time to time
and place to place.

In your organization, identify those activities:

• which have been computerized.

• which have yet to be computerized (but might be).

• which are unlikely to be computerized in the near future.

For each of the above statements try to identify some factors that influence which one they fall
into (you might try constructing a grid like the following):

activity for the statement against the statement

attendance database of students already easier to do by hand, cost of
records exists, network hardware in hardware too much, teachers

place. not proficient in IT.

have been
computerized

tests multiple choice, gap-fill, easy essay type questions more
to computerize, large database difficult to do, smart (but
of questions possible, misguided) students might hack
automated grading useful. out the answers.

might be
computerized

group 'face to face' involves more might be useful if access to
discussions senses in the process (important internet was greater, could be a

for kinesthetic learners), supporting process
limited bandwidth available

unlikely to be
computerized

These are examples, not meant to be exhaustive or complete. You might like to form small groups
to investigate each one and report back.

11

MODULAR DECOMPOSITION

Software Development

© IBO 1.2.5 BASIC CONTROL CONSTRUCTS
2004

Computers systems, in general, are used for systems where the required information can be
precisely identified, coded into data, captured, processed and output as new and useful
information by suitable hardware and software.

Thus the analysis will produce the information requirements of the new system, it will define:

• The input data required

• The processing needed

• The outputs that will be produced

This 'input-process-output' model of computer systems will occur many times throughout this
book. These requirements are often presented using a systems flowchart (see Sections 1.3.1 and
1.3.7).

© IBo 1 2 62004 ••

The design phase will then examine how these tasks are to be carried out and which parts can be
solved using a computer. As an example, consider a library system, the computer can handle the
tracking of data about clients and books. It can tell you where books belong, where they actually
are and so on. The system will not provide for the physical movement of books from check in
desk back to shelves - not because it cannot be done, but because it would be expensive to
implement and would interfere with peoples' ability to browse the shelves.

See also, Section 1.6.2 for further examples of modular decomposition.

12

Computer Science

© IBo 1 312004 ••
The main parts of any computer system follow the input-process-output model of data flow:

©IBo1.3 SYSTEM DESIGN
2004

PARTS OF A SYSTEM

Figure: 1.1 A & B

A

___In_p_u_t ----..IL-__p_r_o_ce_s_s ---~·IL-__O_u_tP_u_t____.J

Output devicesInput devices

In hardware terms, it is only necessary to add some backing storage since the CPU has only RAM
(temporary storage) and ROM (read only storage) in its primary memory:

B

The user would find it difficult to deal directly with the hardware since all operations at this level
are carried out in binary machine code. Therefore, successive layers of software have developed­
operating systems (including the user interface) and applications software:

Figure: 1.2

©IBo 1.3.2 DATA IN A COMPUTER SYSTEM
2004

One of the important processes identified in software development (see Section 1.2.2) was
analysis and fact-finding. This involves carefully identifying the data which needs to be held and
processed by a system.

13

Software Development

EXAMPLE
In a bicycle rental system, data can be collected via a manual system, using record cards, for
example:

Bicycle number: IP201 Purchase date: 18/07/00

Make: Elektra Value: $185.00

Model: l8-speed de-luxe Hourly charge: $4.25

Date and Renter's ID Date and Renter's ID Date and Renter's ID
time time time

-

--

In order to fully describe the system it is necessary to consider what happens under many
different circumstances. For the total charge to be computed when a bicycle is returned, the hours
ofrenting need to be calculated and multiplied by the hourly charge.

Often, the data that needs to be held and processed in a system is identified using data flow
diagrams. A data flow diagram typically uses the following symbols (although there is not
complete consistency in practice):

Figure: 1.3

The box with rounded comers (maybe square or rectangular)
which represents a process. An example would be the calculation
required above.

The box with an open right-hand side representing a data store.
This would be the index card for the bicycle.

The closed rectangle is a source or sink (destination) of data. It
shows the limits of our diagram, how the data gets into or out of
these boxes is not a concern of this diagram.

These boxes are accompanied by arrows to show the direction of data flow. Often the arrows have
other associated information such as the data that is on the move or, in other systems, the person
responsible for the process.

For a complete picture, consider returning the rented bicycle using the documents and data in the
manual system:

14

Computer Science

Bicycle returned

Renter pays

Figure: 1.4

Bicycle details
card

Update bicycle
details card

No reference is made to hardware used. For example, the calculation may be done with a
calculator (or abacus or on the back of an envelope), this does not concern the data flow.
However, when a new system is to be created, it is important to know that this process needs to be
carried out.

EXERCISE 1.2
1. Construct a data flow diagram showing what happens when a bicycle is rented out.

2. List all the other situations where updating of data may take place in this system.

Even a small system will require several diagrams to describe it completely.

3. Study your existing student registration system. Draw a series of data flow diagrams that
illustrate where data is stored, how it is used and when it is updated.

4. Examine the Weather Case Study (IBO 2001). Construct a dataflow diagram showing how
a person at a TV station would prepare a weather forecast for presentation .

••••••••••••••
~l~21.3.3 DATA CAPTURE AND PRESENTATION

The data flow diagram shows only data flow without reference to mechanisms of capture and
display. There are a great many ways to capture data for use in a computer system. The main
devices are described in chapter 2 and their methods can be classified in the following way:

--

Input method Example devices Example of use

Manual data entry. Keyboard, mouse, joystick, Adding client or book records
touch screen, touch pad. in a library.

f---- ._ -

Direct data entry. OCR/OMR scanners, MICR Lending a book, locating
reader, barcode scanner. borrower details.

Automatic data Sensors - temperature, sound, Controlling the temperature in
entry. pressure, light etc. the library.

'------

15

Software Development

Similarly one can classify output devices in common use:

Output method Example devices Example of use

Temporary display. VDU, LCD display, lights. Showing the price of an item at
a pas terminal.

.--

Permanent display. Printers, plotters. Printing a receipt at a pas
terminal.

Electrical! Actuators - relays, switches, Sending credit card details to a
mechanical output. convelters etc. bank from a pas terminal.

There are so many input or output devices that not all of them will fall into a particular
classification.

EXERCISE 1.3
Study the Human Evolution Research Case Study (IBa 2002).

1. Identify and describe all of the input and output devices in the case study.

2. Explain why each of these devices is appropriate to a given task .

•• • .. • .. 8: 8: 8: 8: 8: 8: 8: 8:

~6~21.3.4 DESIGN OF APPROPRIATE DATA STRUCTURES
This topic is covered in detail in Chapter 2 where the relevant data structures are described
together with examples of when it would be appropriate to use them. Here we present some
exercises that can be used once the student is familiar with a range of possible data structures that
can be used.

Notice that reference is often made to activities done "in Chapter 2"; this is because this topic
would normally be covered after that even though it appears first in the Subject Guide.

In the examination, students are likely to be asked similar, but much simplified questions. The
design of appropriate data structures is an important activity for the dossier and students should
be able to discuss their choices. It is an excellent idea to keep a written (or web-based) log during
the design stage of the dossier including sketches and notes about the problem and possible ways
of representing or storing the data for a system.

16

Computer Science

EXERCISE 1.4

1. A holiday park offers sites for tents and caravans some of which are supplied with power.
To book a space the following system is used:

0008000000. ~ . .
powered tent sites powered caravan sites

entrance

When a customer arrives the following details are collected and entered onto a form:

• Name.

• Address.

• Vehicle Registration Number.

• Site Allocated.

Information is held about each site in a card index file:

• Site number.

• Powered?

• Type (tent or caravan).

• Daily charge.

Carefully consider the data flow in the following scenarios:

A new customer arrives.

• A customer leaves.

• A site has its status changed (eg from powered to non-powered).

Draw data flow diagrams to illustrate the above scenarios.

Discuss, including diagrams, the data structures that could be used to hold the data for the
system. Remember that the 'discussion' keyword requires you to consider a range of
possible data structures and give reasons for selecting the ones you did .

......................

17

Software Development

© IBO 1.3.5 HARDWARE COMPONENTS
2004

You have probably already studied a range of input, output and backing store devices from
Chapter 3. For each one given there, copy and complete the following table related to the holiday
park scenario of the last section. An example is given for you:

Device Could be used? Example of use Advantages Disadvantages

Easy to enter Slower than

Keyboard Yes
To enter details alphanumeric direct entry
of customers. data such as an methods such

address. as a barcode.

~6~'?1.3.6 USER INTERFACES
Early operating systems operated with typed in commands (requiring command-line interpreters
or CLls) while later ones have developed graphical user interfaces (GUIs). The main features of
these interfaces are:

Command Line Interfaces Graphical User Interfaces

Easier to implement for a programmer, More complex to implement, requires
requires less memory to run. Can be run more memory, a pointing device and a
on systems without graphical monitors. graphical monitor.

Users need to remember specific Icons (small images) help users to
commands so new users can find them remember commands, file types;
harder to use. commands are grouped in menus.

Long term users may find it quicker to New users will find it easier to use
type in a command at the keyboard than because they do not have to remember
to use a mouse or other pointing device. specific commands.

Graphical User Interfaces are sometimes described using the term WIMP, variously interpreted
as:

• Windows

• Icons

• Menus

• Pointers

• Windows

• Icons

• Mice

• Pull-down Menus

18

Computer Science

EXERCISE 1.5

1. Explain the advantages and limitations of both GUIs and CLis for each of these tasks:

a. A researcher preparing images of cloud formations to be posted on a web page.
b. A computer technician setting up a task to batch copy a group of files from one

device to another.
c. A student compiling a directory of Java source files into class files.
d. A new user copying a document from hard drive to floppy disc.

S S s·ssa.a·a aaaaa·a

~6~.?1.3.7 SYSTEMS FLOWCHARTS
Systems flowcharts are designed to link data flow and processing operations to specific pieces of
hardware. They are sometime known as input-output (systems) flowcharts. They should not be
confused with flowcharts used to show the structure of algorithms.

As with data flow diagrams there is a wide variation in symbols used to implement systems
flowcharts; below are the ones specified by IE in the Computer Science Subject Guide:

Figure: 1.5

Devices and media Other symbols

Annotation

Data flow

Lines crossing

Lines joining

Communication
(2 ways unless

indicated)

..

7

+­
-t-

Disc storage

Document

Tape storage

Input or output
(word inside)

On line storage

Action or process

Q

LJ
D

"-------I/

=

19

Software Development

Students generally seem to have great difficulty with systems flow charts; the main problem
seems to be that they think in terms of linear algorithm flow charts (I believe there is a conspiracy
of subversive maths teachers at work here). The following diagram shows the outline shape of
the four different types of chart used in this book:

Figure: 1.6

Flowchart Systems flowchart

Data flow diagram Module diagram (Structure chart)

Points to note:

• Flowcharts are used to describe algorithms (although pseudocode is often preferred these
days);

• Systems flowcharts are used to describe input-process-output in computer systems, they are
the only charts to refer to hardware devices;

• Data flow diagrams refer to data objects and processes (people, paper files, computer files,
etc);

Module diagrams are used to split a large problem up into several smaller ones (stepwise
refinement). This makes the problem easier to solve and divide up among a programming
team.

20

Computer Science

Simple processes

Consider the case of the holiday park described in Section 3.1.5. If this system were to be
transferred to the computer, the following tasks (among others) would have to be carried out:

Registering a new customer could involve entering the new customer details at the keyboard,
entering the site location and storing these to a database:

Figure: 1.7 A, B & C

Allocate site, store t----.-----.l.~
record to disc L_J

More detail can be added, if required, as an annotation:

[

Name

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~:t;~~sRegistration
Number
Site Allocated

The process of checking out a customer would involve calculating the bill and issuing a receipt:

Recover record ~
L-_c_a_lc_u,la_te_bl_·ll--'I4----·----ILJ

~6~.f1.3.8 CONSTRUCTING SYSTEMS FLOWCHARTS
Chapter 3 describes batch, online and real-time systems; here we examine how these types of
process are represented in systems flowcharts.

Common batch processing tasks

In batch processing, data is gathered first and then processed in one go. Typical operations update
a master file using a sorted transaction file. Therefore, in many batch processes (cheque clearing,
electricity billing, payroll processing, batch update of a stock file), paper documents will be
collected, validated and sorted. Items rejected by validation may be corrected and re-entered:

21

Software Development

Example for electricity billing:

Figure: 1.8

Failed validation,
check and re-enter

data

Validate readings
and write to

transaction file

Sort

Validated
transaction file

Sorted and validated
transaction file

The sorted transaction file is then used calculate the amount of electricity used (by subtracting the
reading in the master file from the reading on the transaction file) then to produce a bill and to
update the master file with the new reading. Of course some errors may still occur. If the meter
reading is incorrect, bills can be very large or perhaps negative. These errors are typically
recorded on a hard copy print out.

Figure: 1.9

Activity

Sorted and
validated

transaction file

New master file

Update master file and
produce bills

Master file

Error report

You will have studied cheque processing and payroll processing systems in Chapter 3. Construct
a systems flowchart for each of these systems.

22

Computer Science

Common online processing tasks

Recall that, in online processing, any transactions are used to update a database immediately. A
typical example is supermarket stock control where barcode scanners at a POS terminal read the
barcode, look up the item details in a stock database and return the details to the POS terminal
where they are printed on a receipt and shown on a display.

Figure: 1.10

Item code not
found retry

Look up item -((
, __d_e_ta-,il_s_u_sl_·n_g_:I---- Stock file
_ barcode as key . _

Activity

Add item to bill
display price

and item
description on

display

You will have studied airline reservation and library cataloguing systems in Chapter 3. Construct
systems flowcharts for these processes.

Common real time processing tasks

Real time systems are a type of online processing system in which the processing is fast - the
input data is processed quickly enough to affect the next output of the system. Usually such
systems collect their data through sensors (automatic data entry). A typical example is a system
which monitors a nuclear plant's reactor core. In some reactors a set of rods are inserted into the
core to damp the nuclear reaction. When this is done, a warning is sent via a communications
system to the control room. This situation might be represented as follows:

Figure: 1.11

Compare with
required

temperature

Activity

You will study air traffic control and patient monitoring systems in Chapter 3. Construct systems
flowcharts for these processes.

23

Software Development

©IBo1.4
2004

SOCIAL SIGNIFICANCE AND
IMPLICATIONS OF COMPUTER
SYSTEMS

This is a potentially huge topic to be covered in only 5 hours of teaching time. However, in
principal, these topics are only examined in the context of the Case Study. Of course, as computer
teachers, we would be failing in our duties if we did not at least alert students to the potential
social consequences of the increasing use of information and communications technology.

©IBo 1.41
2004 • SOCIAL AND ECONOMIC IMPLICATIONS OF

INSTALLATION OF NEW SYSTEMS
Section 1.1.8 has already covered some aspects of the installation of new systems and the
different ways in which this could be carried out.

The introduction of computers into an organisation has significant consequences for employment.
One obvious case is the loss of work caused by the use of computers. Perhaps less obvious are
other forms of cost saving such as reducing the amount of time a patient spends in a hospital or a
customer spends in a supermarket. This has benefits as both organizations can then serve more
patients/customers using the same facilities.

On the negative side, there are losers in this shift to increased efficiency and increased use of
sophisticated equipment. If people and societies are unable to adapt to change, or unable to gain
training in newer technologies, many jobs will inevitably be lost. The introduction of ATMs and
WANs in banking has lead to a decrease in staffing at banks and even a reduction in the number of
bank branches.

Opposed to this is the need for people to develop the software and build the hardware needed for
new computer systems. However, such people usually have different qualities and training
compared with those losing their jobs. This may promote divisions in society between poorly
qualified (and less employable) people and better-educated ones. These divisions also extend to
communities and countries.

In relation to the specific methods of changeover given in Section 1.1.8, we could summarize the
social and economic implications as follows:

Method Social Implications Economic Implications

More work for employees
Staff may have to be paid more or extra staff

Parallel or they may have to work
employed. Mistakes less critical for the

Running longer hours to cope with
business.

the extra work.

More hours to work in this
Costs may still be associated with extra work.

case also. Different people
Phased

may be affected in different
Longer period of changeover; difficulties with

Introduction system may become drawn out - the
ways at different times -

company's reputation for efficiency may suffer.
could cause dissatisfaction.

24

Computer Science

Method Social Implications Economic Implications

Staff may feel under great As with the other methods there are training

Direct
pressure/stress during this costs to be considered. The cost of hardware/

Changeover
type of changeover. software may also have to be paid at one time
Customers may also dislike rather than spread out over time. Always a risk
changes - at least initially. of failure turning away potential customers.

© IB0 1 422004 • • SOCIAL SIGNIFICANCE AND IMPLICATIONS OF THE
WIDESPREAD USE OF COMPUTERS

In the context of the appropriate case study the following issues could be considered. A point to
remember in examination questions is to always try to see both sides of the question, especially if
you are expected to 'Explain the implications' of a particular issue. Simply repeating sentences
from the case study will seldom work.

Economic consequences

Competition for goods and services among countries in the increasingly global economy leads to
a situation where countries using computer systems to build cars, for example, can offer cars for
sale at lower prices than domestic competitors can manage. This, in tum, could lead to further
unemployment in the less competitive country. In the case of human evolution research we see
that universities with advanced scanning systems can sell their digitised graphic images whereas
universities using manual techniques (possibly located in developing countries) cannot.

A further consequence of the development of computer systems as communicating devices has
been the move to teleworking and teleconferencing. Where a business deals with information and
services there is no need to bring people together to work and to attend meetings as they can do so
from home. This has the potential to make huge changes to our towns, cities and lifestyles.

Not exactly a direct consequence, but one industry that has sprung up in certain parts of the world
is that of copying software - software piracy. This is of great concern to major corporations and
individual programmers alike. Many people put considerable time and effort into the
development of software and would like to be paid fairly for their effort. Piracy is simply theft of
those ideas, as prospective computer programmers this is an argument you should agree with!

For counter-arguments in which software is developed by a community for the good of all, see
http://www.opensource.org many excellent applications which nm large parts of the internet
(Apache, PHP, Mozilla and the operating system Linux) have been developed as (free)
community projects.

Political consequences

The OECD (Organisation for Economic Cooperation and Development) has proposed a number
of principles which should apply to data held about people:

Collection Limitation Principle. There should be limits to the collection of personal data and
any such data should be obtained by lawful and fair means and, where appropriate, with the
knowledge or consent of the data subject.

Data Quality Principle. Personal data should be relevant to the purposes for which they are to be
used, and, to the extent necessary for those purposes, should be accurate, complete and kept up­
to-date.

25

Software Development

Purpose Specification Principle. The purposes for which personal data are collected should be
specified not later than at the time of data collection. The subsequent use should be limited to the
fulfilment of those purposes or such others as are not incompatible with those purposes and as are
specified on each occasion of change of purpose.

Use Limitation Principle. Personal data should not be disclosed, made available or otherwise
used for purposes other than those specified in accordance with Paragraph 9 except:

a) with the consent of the data subject; or
b) by the authority oflaw.

Security Safeguards Principle. Personal data should be protected by reasonable security
safeguards against such risks as loss or unauthorised access, destruction, use, modification or
disclosure of data.

Openness Principle. There should be a general policy of openness about developments, practices
and policies with respect to personal data. Means should be readily available of establishing the
existence and nature of personal data, and the main purposes of their use, as well as the identity
and usual residence of the data controller.

Individual Participation Principle. An individual should have the right:

a) to obtain from a data controller, or otherwise, confirmation of whether or not the
data controller has data relating to him;

b) to have communicated to him, data relating to him:
• within a reasonable time;

• at a charge, if any, that is not excessive;

• in a reasonable manner; and

• in a form that is readily intelligible to him;

c) to be given reasons if a request made under subparagraphs(a) and (b) is denied,
and to be able to challenge such denial; and

d) to challenge data relating to him and, if the challenge is successful, to have the data
erased, rectified, completed or amended.

Accountability Principle. A data controller should be accountable for complying with measures
which give effect to the principles stated above.

The increasing amount of personal data held about citizens on governmental and private
computer systems has lead to considerable legislation on data protection based on these
guidelines.

One of the worries about databases is the potential for linking them together to get a highly
detailed profile of an individual. Unscrupulous governments could use such data to spy on their
political opponents. Another is the accuracy of data held on computer records can get mixed up
and miscarriages of justice have occurred because of this in several countries of the world.

Much of this topic was covered by the 2003 Case Study.

26

Computer Science

Cultural consequences

One of the effects of the growth of computer systems has been the spread of the English language
via software and operating systems. With language comes culture and cultural bias (some would
say cultural 'imperialism'). After all, not all cultures read text from left to right or top to bottom
of a page.

The computer also offers much in the way of passive entertainment so there are fears that young
people spend too much time online or playing computer games. Of course, the internet offers an
ideal way for people to find out more about other cultures and to 'meet' people from other
countries online in chat rooms.

Environmental consequences

Computers use large amounts of electrical energy, although the main power drain does come from
the monitor and two developments have helped reduce this. The first is the use of power settings
which allow the monitor to 'sleep' after a short time interval. The second is the increasing
affordability of low power consumption LED screens.

Although computers have reduced the amount of paper used in some offices, in general, the use of
paper has dramatically increased (look around your own school for evidence of this - which
department uses the most paper?). Even when students (and teachers) are careful about printing
(we hope) a great deal of paper still ends up in the recycle bin. The environmental cost of paper
use is not so much the rainforests or other trees (most computer paper is pulped from fast­
growing eucalyptus plantations) but the high energy cost of paper mills and their extensive use of
chemicals such as bleaches. Printing also uses ink, and in the case of laser printers, toner
cartridges. In schools and colleges there is hope that reasonably priced palmtop computers using
wireless networks could replace paper worksheets in the near future. Many institutions in
developed nations are already transferring their course notes to the internet or a school intranets
(internal networks).

As mentioned above, teleworking and teleconferencing are growing. Since less movement of
people is needed, there are environmental benefits (marginal, at present) from reduced
automobile or airplane journeys.

CLASS ACTIVITIES

1. Make a list of all the databases where information about you might be found.

2. Investigate your school administration system. What data does it hold about you? How
closely does it meet the criteria laid down by the OECD?

3. For each of the case studies, list and discuss the economic, political, cultural and
environmental issues involved. When discussing the implications, remember to include all
sides of each issue.

This is another activity that can usefully be carried out in small groups.

a a a -IC .. a

27

Software Development

© IBO 1.4.3 CURRENT TRENDS AND THEIR CONSEQUENCES
2004

Some of the current trends in computing that can be identified are:

More power in smaller boxes.

• The introduction of microprocessors in many devices.

• The convergence of mobile computing and communications.

• The further development of software (interfaces and agents).

Ever smaller components mean that computer systems become more powerful. The development
of the laptop and palmtop personal computer has made it possible for people to work and
communicate while on the move. In some cases this has radically changed the way people work.
A salesperson for a company typically used to travel the country tasking orders for goods which
would then be recorded on paper and taken back to headquarters for processing. Now, if a
customer asks about the range of goods, the salesperson can use a laptop computer to connect to
the company's mainframe where the inventory (database of goods in stock) is held and say
exactly what is available and by when it can be delivered. Current trends have seen companies
make some facilities of their own systems available directly to clients' computers so that, for
example, the client can themselves browse available inventory and place an online order (so­
called B2B systems). One consequence might be a change in emphasis or even loss of job for the
sales representative.

Of course, components can only shrink in size so much. Maybe it is possible to make a computer
the size of a thumbnail. However, the interface would be somewhat cramped and impracticable
however (at the present level of technology, that is!).

We are now used to the idea that many everyday devices are 'computerized' and thus
programmable. This applies to older devices like washing machines, watches, cameras and
domestic heating/cooling systems. However, some devices in current use would not be possible
without the use of microprocessors - pocket calculators, ABS, pacemakers, mobile phones
weighing a few ounces and digital cameras are some examples. Some would argue that the use of
calculators has lead to a decline in maths skills and the widespread use of mobile phones is more
of a cost than a benefit, but it is always worth remembering that the technology itself is neutral.
Casual use aside ("I'm on a train"), the mobile phone has brought benefits to people in less
accessible communities where the cost of installing and maintaining conventional copper cable
would be high.

Current trends would suggest that it will not be too long before most domestic devices are fitted
with microprocessors and plugged into networks (wireless or otherwise) so that they can be
controlled remotely. This way - the classic scenario has it - the refrigerator calls the dairy
products supplier whenever your milk carton approaches an empty state. Cynics again may be
more likely to predict a General Protection Fault that causes the fridge to fail corrupting all your
goodies. Certainly, for such a scenario to come to pass, we can say that both software and
hardware will need to increase in reliability even as they increase in complexity.

The main developments in software will hopefully be a more user friendly interface and software
that 'knows us better'. Compare the amount of training required to use today's computers with
that of using a mobile telephone. The telephone interface has evolved over a number of years and
is now quite 'user friendly'. It seems that the natural language interface and spoken commands
may, at last, be getting to the point where they are less trouble than the traditional keyboard and
mouse. We have to be a bit careful though as computer programmers thought that this problem
would be solved long, long ago.

28

Computer Science

The idea of the software 'agent' has been attracting much interest. The vision is of a computer
program that works with you and understands your computer needs. It tracks your emails and
sends other programs out over the net to see if there are any sites matching your known
preferences. It keeps track of all the files you have ever created and can tell you where you stored
them (wouldn't that be nice!).

Further reading

It is, of course, impossible to cover all the developments and their possible consequences in
detail. Teachers and students would do well to read a selection of articles in computer magazines
and even general interest magazines such as The Economist, Time and Newsweek which often
cover current trends in computer systems. Such articles provide a useful framework for
discussion of this topic. In principle, however, in examination papers these topics will only be
discussed in relation to the appropriate Case Study.

~6~21.5 THE SOFTWARE LIFE CYCLE
This topic is concerned with the way that software applications are developed and the way in
which that process forms part of the larger cycle of systems development.

Students are expected to undertake a dossier project which may typically run to somewhere
between 60 and 100 pages of code and documentation as part of the course. During this process
they are expected to utilize the commonly accepted tools of software development and to gain
some understanding of the way in which problem solving in this domain can be approached.

From the IE point of view, the program emphasizes the problem-solving approach over simply
coding solutions which might be the focus of other types of Computer Science program at this
level.

There are many models of the systems development and the similar software development
process. Both these processes have a cyclical nature and the software development cycle can be
viewed as a stage of the systems life cycle.

© IB0 1 512004 •• OUTLINE THE MAJOR STAGES IN THE SOFTWARE
LIFE CYCLE

There is no general agreement on terms so we have shown those mentioned in the program guide
and some others in common use:

Terms in the Subject Guide Related terminology
Related sections of this

chapter

Analysis 1.2, 1.3,2.5,2.6

Problem statement
System requirements or

1.5.1,1.2.4
software requirements

Design
Modular design or

1,3,1.5
detailed design

Construction Integration, development Chapter 2

Testing
System testing,

1.2.8,2.2.12
acceptance testing

29

Software Development

Terms in the Subject Guide Related terminology
Related sections of this

chapter

Installation Implementation 1.2.7, 1.6.2

Maintenance 1.2.9,1.6.1

Obsolescence 1.2,1.3,2.5,2.6

Some of the related sections refer to the systems life cycle rather than the software life cycle, but
the same general principles apply.

~6~'? 1.5.2 CYCLICAL NATURE
This process is cyclical rather than linear because software systems once developed stay in place
for many years. They have to be adapted to reflect changes in the way they are used. As an
example, banks have been developing many new systems over the past 20 years, ATM's,
telephone and internet banking to mention just three major innovations. Therefore maintenance
involves making changes to an existing system which requires analysis leading to specification of
requirements and so on.

For this reason the software life cycle is often shown in diagrammatic form.

Figure: 1.12

Maintenance

Analyse the existing
system

Specify the
requirements

Testing and
debugging

30

Software design

Software
construction

Library System

Computer Science

~6~~1.6 SOFTWARE DESIGN
Software design involves determining the inputs, outputs, data file formats including any data
capture methods and output formats. There are very many ways to input data into the computer:

© IBo 1.6.1 DATA REQUIREMENTS
2004

Some common input methods:

• Manual entry (keyboard, mouse, numeric keypad, touch screen).

• Direct Data entry (OMR, OCR, MICR, barcodes).

• Automatic data entry (sensors, buttons, switches).

Common output methods include:

• Hardcopy (permanent) output (printed reports, graphic plots)

• Softcopy (temporary) output (monitor screens, graphic displays)

• Physical output (actuators, relays)

Chapter 3 outlines the common devices used to capture input data and display output data.

The design of data files is very important; it is not easy to change these once a system has been
put into operation (whereas it may be possible to change input from keyboard to touch screen, for
example, with few problems).

One of the functions of an operating system is to provide a user interface and, of course, software
developers will need to provide one for their own users. The two main 'flavours' are Graphical
User Interfaces (GUI's) and Command Line Interfaces (CLI's), see section 1.3.6.

~6~~ 1.6.2 MODULAR DESIGN
The software parts of a solution need to be designed in detail and a common starting point is the
module diagram. This breaks the problem down into smaller components (modules) in a process
known as 'top-down design'. Using our library example again:

Figure: 1.13

The CLIENT DATA SYSTEM might be required to update the client file, so this module can be
further broken down - this is 'stepwise refinement'.

31

Software Development

Figure: 1.14

Client Data System

Add a Client

Add a Client

Again we can break down each of these processes by further refinement:

Figure: 1.15

We will usually find, again, at some level our modules are dealing with input, processing and
output of discrete data items. When this level is reached and the corresponding data structures
(e.g. the data file) have been defined, then pseudocode can be written to give the final level of
detail necessary to program the modules.

In the Java language, our modules are called 'Classes' and a 'Class' includes both the
programming code and the data it operates on, whereas earlier structured (or procedural)
languages like Pascal separated the data types and structures from the code. A procedural
language might offer this type of structure:

Program name
global data:

data types (integers, reals, characters, Booleans)
data structures (strings, arrays, records, files)
eg client file

procedure main
begin

procedure add client
procedure edit client
procedure delete client

end

procedure add_client
begin

list of programming statements

32

Computer Science

these operate on the global data types and
structures, eg store client data in a file

end

(a more sophisticated procedure might use parameters and local
data)

procedure edit_client (parameter: client_record)
local data:

data types (integers, reals, characters, Booleans, eg
the name of the client, current number of borrowed
books)data structures (eg the client data file)

begin
list of programming statements
these operate on the parameters, the local
variables and the global data types and
structures

end

The local variables and parameters help to reduce the inter-dependence of modules which can be
a problem with large scale projects (consisting of many hundreds or thousands of modules).

Modem languages combine procedures with the data on which they operate (Classes or objects)
and don't allow other objects to access their own internal structure. In the library example, a
client object could store data about library users. The data to be stored would be held internally,
other classes could operate by sending messages or requests to the object.

Figure: 1.16

client class library class

name me e sent to Class. client data file of client
objects

address
add a client with the

books details "Yuko", "I Tokyo

code to validate
Square"

data, create the client object responds code to run the
client objects ... by carrying out the action, a library ... add, edit, delete

new client object is created clients, for example

This topic is far from trivial (!) and is more relevant to higher level students, therefore we address
it further in Chapter 5. Students would not be asked to make a comparison of these two methods
of programming and this very brief discussion is really aimed at those older teachers (perhaps of
the authors' generation) who might be more used to the modular, structured programming
approach.

33

Software Development

For those who wish to learn more, there are excellent, easily-readable books such as:

Understanding Object-Oriented Programming with Java, Budd T, Addison-Wesley, 2000, ISBN
0-201-61273-9

Objects First with Java A Practical Introduction Using BlueJ, Barnes D & M Kolling, 2003,
ISBN 0-13-044929-6.

Teachers who wish to use Java for Object-based or even procedural programming can still do so
with Java and JETS, particularly at Standard Level.

Developing a solution using modules (or objects), as above, brings many benefits:

• Errors are easier to locate within a faulty module as opposed to looking through a large
amount of homogenous code, thus testing and debugging is easier.

• Work can be split up among many people or teams with each one being assigned a module,
thus the overall system is developed in a shorter time.

It is easier for an individual to program a small module and, should the need arise, the work
done on a module can be abandoned (the design did not work out or the programmer left the
team).

The system is easier to understand and therefore maintain when it is split into small units.

~6~21.6.3 PROTOTYPING
The new program in Computer Science requires students to implement a prototype as part of their
dossier design.

A prototype is a simple version of a system produced during the design stage.

© IB0 1 642004 • • PROTOTYPING APPROACH TO SYSTEMS DESIGN
AND DEVELOPMENT

ADVANTAGES OF PROTOTYPING

The purpose of prototyping is to show the user an interface and to give some indication of how
the system is expected to work. The prototype is not a full working version of the software but it
does allow the user to propose changes at the design stage.

The prototype could be produced by a different system than the one eventually used for the
project. A developer could present an interface using an applications package (presentation
software for example) even though the eventual solution might be implemented using Java.

© IB0 1 6 52004 • •

One of the key problems for any systems analyst is that the users have no clear idea of what they
want from a system (or, at least, are not able to specify their needs precisely and without
ambiguity).

By using prototyping at an early stage in the project, the analyst/designer can produce different
prototypes showing alternative solutions. The user can then give concrete feedback to the
designer to indicate whether they are implementing the solution the user desires.

The earlier that changes can be made to a system the less time is wasted completing the system
and therefore less money will be spent. Early changes are not as costly as late changes!

34

EFFICIENCY OF SOLUTIONS

Computer Science

CLASS ACTIVITY
Try this in pairs. Get one partner to describe (by speech alone) a simple object that they want
produced (e.g. a birthday card, an application form). On the computer, design and implement the
object according to the description they gave. Get the partner to describe how closely the object
met their initial expectations. Now reverse roles or switch partners but allow the 'designer' to
sketch an initial solution after the verbal description has been given. The sketch corresponds to a
prototype and the advantages of this approach should be apparent.

Getting to know what users want is often the hardest part of developing any system (often the
users are not sure what is possible). You will probably find this out the hard way when you
complete your dossier project.

••••• aacaaaa ••
© IB0 1 6 62004 • •

Computer Scientists usually compare the storage and speed requirements of algorithms using big
o notation but only a limited knowledge is required at Higher Level (Chapter 5) and none at
Standard Level.

In a given high-level language we can estimate the storage required by a file of records as long as
we know the number of bytes used to store each fundamental data type. Consider a typical record
structure:

newtype STUDENTRECORD record
FORENAME
SURNAME
BIRTHDATE
SEX
FOR]Y[

endrecord

string
string
string
character
character

If we allocate 25 characters for the FORENAME and SURNAME fields then we can calculate the
size of one record:

FORENAME 25

SURNAME 25

BIRTHDATE 8

SEX I

FORM 3

Total: 62 bytes

If there are not more than 800 students in a school then we can calculate that a file of:

800 X 62 = 49600 bytes or just under 50 KB

Therefore we could (easily) store the file on a floppy disc, if need be, for this application. If it is
necessary to read the entire file into memory for some operation (say, sorting) then we also know

35

Software Development

how much RAM will be required to do this. By today's standards, of course, such amounts of
memory are tiny.

See Chapter 2 for details of the sizes occupied by Java's data types.

If we need to search this file for a particular record we can calculate that, on average, we will have
to search half the length of the file (or 400 records). Therefore we can make some estimate of the
time it will take. Searching and sorting are discussed further in Chapter 2.

1.7 DOCUMENTATION
There are two types of documentation that are needed for computer systems; system (or
technical) documentation and user documentation.

~6~~1.7.1 DOCUMENTATION OF THE CYCLE
Documentation accompanies every stage of the cycle so that when changes need to be made the
reasons for design decisions, input data collection forms, choice of test data, data structures used
and so on can be easily located. Programmers and designers, generally speaking, hate to do this
work because it is usually tedious whereas they enjoy the creative aspects more.

It has been known that making a minor change to a running system can involve nearly as much
work as developing the system in the first place because of inadequate documentation. In general,
if documentation is poorly done, maintenance costs become very high.

CLASS ACTIVITY
This cycle of plan - design - implement - evaluate occurs in many other disciplines. Compare the
life cycle given above with those that might be found in other IB areas (such as Design and
Technology, Theatre Arts, the Extended Essay) and other disciplines such as instructional design,
CAD/CAM and other engineering tasks. Sources might be books, websites and technical
journals. . .

~~~1.7.2 SYSTEM DOCUMENTATION
This documentation is intended for programmers who have to understand the program so that it
can be maintained - it may have errors or there may be requests for improvements and
enhancements. Thus the target audience for this type of documentation is people who need to
understand the inner workings of the program (often in a hurry).

System documentation itself is often classified as either internal documentation - these are
exemplified by the comments which accompany the source code listings - or external
documentation.

As well as commenting on the purpose of each subprogram, the type and purpose of any
subprogram parameters and of any local variables, programmers can help make code more
understandable by using:

• meaningful identifier names.

• keeping methods small and classes limited in scope.

• a constant indentation scheme to illustrate code structure.

36



Computer Science

These comprise the elements of 'programming style' referred to in dossier assessment criterion
Cl.

External documentation provided for other programmers should include the following items:

• Purpose of the program.

• Data flow in the system.

• Hardware and software requirements of the solution.

• Structure of the program (e.g. via a module diagram).

• Description of the purpose of each module in the diagram.

• The module interface - what parameters it haf.. and any values it returns.

• A list of identifiers (variables) used by each module.

• A description of the module and any subprogram algorithms in pseudocode.

• A description of any data structures used (arrays, records, files etc.).

• The test plan - functional and data entry testing.

• Description of any testing and debugging actually carried out.

• Evaluation of the system.

Your dossier project requires you to submit many of the above items for assessment.

~6~21.7.3 USER DOCUMENTATION
This is documentation written for the non-technical user of the program. Therefore, terms like
'record', 'array' and 'linked list' are never appropriate in user documentation. This person never
sees the internal structure of your program (and couldn't care less, as long as it works). When we
are working on a single project as both programmer and user it becomes difficult to separate these
aspects - that is why it is worth selecting a real world problem for your dossier which can then be
tested on a real non-technical user.

Your user needs to install your program on their system, to know how to use it and to troubleshoot
any difficulties. User documentation often includes these as separate sections.

Installation requires the user to ensure that they have the appropriate hardware and software (e.g.
operating system) for your program. They may have to change system settings to enable your
program to run properly.

Sample input data and expected outputs should be provided to help the user ensure that the
program is running as expected. Obviously, screen shots will also help them understand what they
might expect to see when running the program.

A well-organised trouble-shooting section should be provided so that users can quickly find out
what the problems might be and hopefully fix them before calling you.

Many modem systems of any complexity also include online or onscreen help for the user. These
can be simple hypertext files or even interactive tutorials. You are not expected to develop these in
your dossier programs.

37



Software Development

38



Chapter contents•

2.1
2.1.1-3

2.1.4
2.1.5
2.1.6
2.1.7

2.1.8

2.1.9

2.1.10

2.1.11

Program construction in Java 40
Data types, data structures and constructs in
Java 41
Trace algorithms in Java 10
Evaluate algorithms in Java 10
Construct algorithms in Java II
Explain the need for searching and sorting

11
Apply specified searching and sorting
algorithms
Compare the efficiency of searching and
sorting algorithms 12
Discuss the efficiency of searching and sorting
algorithms 12
Programming Errors 12

39

Computer Science



Computer Fundamentals

~b~~2.1 PROGRAM CONSTRUCTION IN
JAVA

The authors would like to thank Dave Mulkey of Frankfurt International School for his hard work
in defining JETS. Chapter 2 leans heavily on the work he contributed to the IB Subject Guide.

It is not necessary for students to know all of Java (a really huge task). The IB Subject Guide
defines the appropriate content for us which is known as the IB Java Examination Tool Subset or
JETS. It is found in the Appendix to the Subject Guide.

You do not need to write algorithms in perfect Java (or JETS) syntax in the examination, missing
a semi-colon off the end of a statement is likely to be forgiven:

if (x == 3)

{

y y + 4
z = Y x;

x = x + 1;

II there is an error here

However, a slip that leads to ambiguity or incorrect logic will be penalized:

if (x = 3)

y += 4
z = Y - x;

x = x + 1;

In this example it is hard to know if the candidate made a syntactic slip in leaving out the
enclosing bracket or a 'genuine' mistake. The error in comparison (= instead of the correct ==
would probably be OK). Notice that we have used:

x = x + 1;

as opposed to the more customary:

x += 1;
or even

x++;

in this example. This is deliberate since there is less chance of making mistakes or being
ambiguous. The examination paper will also use the same conventions to make algorithms clear
to students. We will follow the conventions laid down by JETS in this book with two main
exceptions:

i. Code examples on the book's support website may not always follow the JETS
convention.

ii. Where we relate examples to Classes students could use in dossier programs we
may use constructs and syntax that are Java language rather than the JETS subset.



Computer Science

©IB02.1.1-3 DATA TYPES, DATA STRUCTURES AND
2004 CONSTRUCTS IN JAVA

VARIABLES AND TYPES
Variables are named memory locations where data can be stored, each variable can hold one of
the data types defined below. A variable only hold~ one piece of data at a time.

The basic variables, or primitives as they are known in Java, have the following data types:

• byte

• int

• long

• double

• char

• boolean

Candidates may encounter the other primitives short and float, but they will not be used in
examination questions.

A primitive is declared with an identifier name as follows:

int number;
char initial;

Identifiers always start with a lowercase letter by convention, usually they are all in lowercase
unless they are multi-word identifiers in which case they may look like this:

double incomeTaxRate;

You cannot mix data types, as in:

char initial = 23.8; II this is an ERROR!

This generates a syntax error in the java compiler. Notice that II defines a comment - a piece of
text not considered part of an instruction - put there for information.

It is always useful to write comments in your examination answers as you may get credit for this
(especially where the exact syntax of your statements is unclear).

You can sometimes allocate a data type to a different variable, e.g.:

char initial = 65; II this is not necessarily an error

initial has the value of the character 'A' whose UNICODE value is 65. We don't know in this case
if it is an error made by the programmer, it is not a syntax error.

It is possible to transform some data types using a cast:

int n = (int) Math.round(2.566); II round returns type long

long is a type of integer that can deal with a greater range of values than int.

41



Computer Fundamentals

DESCRIPTION AND APPLICATION OF JETS PRIMITIVES

primitive size (bytes) Example data Description

Used for small integers
byte 1 123,-59 (whole numbers) in the range

-128 to +127

Used for whole numbers

int 4 -500,450
(negative or positive) in the
range -2,147,483,648 to
+2,147,483,647

Used for whole numbers
(negative or positive) in the

long 8 -5000,4500
range -
9,223,372,036,854,775,808
to
+9,223,372,036,854,775,807.

Used for numbers with

double 8 -34.49587,3.0
fractional parts in the
approximate range -1.79 *
10308 to +1.79 * 10308

Represents a single symbol, a
letter, other symbols or a

char 2 'A', '*', '9' number. Can also represent
integer values in the range 0-
65535.

boolean 1 tme/false
Represents one of two states
only

The way in which these (and other) types of data are stored in the computer are discussed in
Chapter 3.

Uses of these primitives

int

The int primitive type can be used to represent whole numbers between:

-2,147,483,648 and + 2,147,483,647.

-2,147,483,648 etc. -3, -2, -1, 0, 1, 23 etc. 2,147,483,647

The largest int which can be stored depends on the number of bits allocated by a particular system
and in Java, 32 bits are allocated. Higher Level students will need to understand how the number
of bits is related to the maximum and minimum values but Standard Level students need not.

42



computer :SCIence

Integers are thus useful for storing data such as the distance in air miles between Paris and New
York, the number of items in stock in a supermarket or the number of students in a class.

byte

This is an 8-bit storage unit, otherwise equivalent 1:0 the int which can store values between -128
and +127.

long

This is a 64-bit storage unit, otherwise equivalent to the int but which can store values in a much
larger range. It is needed by JETS mainly because certain Math and RandomAccessFile methods
return a long value; you will rarely need to use a long (or byte) type in your own programs.

double

These are numbers with fractional parts and they will always require more storage space in
computer memory than integers. There are four limits to the range of numbers that can be stored:

largest
magnitude

negative number
-1.79xlO+308

;

(

'smaller' numbers

smallest smallest
magnitude magnitude

negative number positive number
--4.94XlO-324 +4.94 xlO-324

approximate range of possible double values

largest
magnitude

positive number
+1.79xlO+308

)

'bigger' numbers

With doubles the computer will be able to store larger and smaller numbers compared to using
integers but there will be some loss of precision When calculations are made. Also, there are some
values which cannot be represented in this format (consider the gap around zero for example).

Notice we have tried to avoid using the term 'small' without qualification since the largest
magnitude negative number is usually considered smaller than the smallest magnitude negative
number.

You can specify a double value by using a suffix if you wish:

double x = 5.0d;

double primitives are useful for storing data which has fractional parts such as currencies, the
average height of students in a class or FM radio frequencies.

char primitives

43



Computer Fundamentals

The first computers were developed to perform complex calculations (such as the exact trajectory
of an artillery shell). However, you might not be studying this subject if it had not been
recognised that character data could be represented within the computer allowing text to be input,
stored, processed and output. Characters are represented by bit patterns as discussed further in
Chapter 3.

Character data on its own is fairly limited - more useful is the ability of most programming
languages to deal with collections of characters (see Strings). Here we should mention that
character data can consist of letters, punctuation marks and other symbols and numbers.
Numbers are stored as char primitives when you do not need to perform arithmetical calculations
on them (house numbers, for example).

In a Java program you can also use the char type to store numbers between 0 and 65535 as it
stores a positive 16-bit integer value (the UNICODE representation of the corresponding
symbol).

boolean primitives

In the middle of the 19th century a (largely self-educated) British mathematician called George
Boole developed the system of logic which still bears his name. This work lay largely unused
until just before the Second World War when Claude Shannon, then a student at MIT, proposed
that the system could be used to describe the behaviours and properties of electronic switches.
Electronic switches are used by the millions in integrated circuits in modem computers.

The boolean primitive stores one of two states, true or false, corresponding to the on or off state
of an electronic switch. In a computer application, the Boolean type could be used to store data
such as whether a video tape is rented or not, whether a student is a boarder or not, if a certain
item has run out of stock or reached its expiry date etc.

Assignment means giving values to variables; this may be done when the variable is first defined
(good practice) or at a later time:

char initial = '~

int number;
number = 23;

ASSIGNMENT
Assignment always takes the expression on the right of the'equals' sign and places the result in
the variable on the left:

number = number + 23; II number is now 23 greater than it was

Notice that the primitive number can hold one and only one value, let's assume that when located
in memory we have a picture something like this:

When the statement:

int number

location

10001

contents

4

number = number + 23; II number is now 23 greater than it was

,~4



Computer Science

is executed, the right-hand side is evaluated first. Thus 23 is added to the value in memory (4)
and the result, 27, is then placed into memory.

int number"

location

10001

contents

27

The value 4 is overwritten and lost forever. This has implications when you want to swap the

values in two primitives.

int number2

int number!

location contents

10001 13

10010

10011 27

if we try something like:

numberl
number2

number2;
numberl;

Both numbers are going to be 13 (I hope you can see this). What we need to do here is use a
temporary location to hold one of the values:

location

int number2

int temp

int number!

contents

10001 13

10010

10011 27

Then, this should work:

temp = number2;
number2 numberl;
numberl = temp;

Try tracing through the above statements on the dIagram to verify that it does actually work.

EXERCISE 2.1
What is the result of the following assignment statements?

temp = number2;
numberl number2;
number2 = temp;

••••••• ;c ••••••

45



Computer Fundamentals

BEYOND PRIMITIVES
As well as primitive data types, Java also includes objects and classes. Some of these objects are
built in as part of the language while others can be imported via libraries or defined by the user.
One of the most important built in classes is the String class:

String name = "Binh Nguyen Le";

You can tell String is a class and not a primitive because the type begins with a capital letter.
While we can think of our primitives as 'containing' a value, it is important to remember that
where objects are concerned the identifier is a reference to where the object resides in memory.
This is because objects have other data stored with them besides their apparent value. Thus in:

String name = "Binh Nguyen Le";
int len = name.length(); II Length of String object

lengthO is a method (a piece of Java Code) thaI returns the current length of the string name.

Primitives have no such extra information thus the following does not work:

II not possible!!, int is a primitive:
int In = len.length();

Therefore, without going further into Java at this point, if we imagine memory as a series of
storage locations:

int len ~

String name ~

location contents

0010001 23

0010010 'B:_nh Nguyen Le'

0010011 nunber of chars in string

0010100 reference to code to get length

0010101
reference to code to convert
characters to lowercase

etc. etc.

Then we can see that primitives really consist just of a value whereas objects have a whole lot of
associated 'baggage' and that name actually refers to the location of a whole lot of other stuff.
Not very technical, I know, but we'll get into some of the detail later.

Notice the difference between String literals and char literals:

String literal: "Hello Globe!"
char literal 'H'

46



Computer Science

INPUT/OUTPUT
The purpose of most computer programs is to communicate with users; this is handled by the
operating system. Since Java is a cross-platform language, independent of OS, there are fewer
specific input/output statements than we might find in other languages.

For input and output the IE has defined a set of very simple statements for use in examination
papers. These are:

method used description

inputString("Type outputs prompt, accepts input, and returns a
anything" ) String

input ("Type anything") :;ame as inputString

input ()
accepts input, and returns a String, no
prompt is given

inputByte("Type a byte")
outputs prompt, accepts input, and returns a
byte

inputlnt("Type an outputs prompt, accepts input, and returns
integer" ) an int

inputLong("Type a long outputs prompt, accepts input, and returns a
integer") long

input Double ("Type a outputs prompt, accepts input, and returns a
decimal" ) double

inputBoolean("true or outputs prompt, accepts input, and returns a
false?") boolean

inputChar("Yes or no (y/ outputs prompt, accepts input, and returns a
n)? ") char

output ( String ) outputs a String

output ( int ) outputs an int value

output ( long ) outputs a long value

output ( double ) outputs a double value

output ( boolean ) outputs a boolean value

output ( char ) outputs a char value

output ( byte ) outputs a byte value

The subject guide indicates one way in which these methods can be implemented in practical Java
programs.

We shall use them here to generalize and simplify code examples, as in:

String name = input("What is your name?");
double height inputDouble("How tall are you in em?");

47



Computer Fundamentals

double heightlnches = height / 2.54;
output("Hello " + name);
output ("Your height in inches is: " + heightlnches);

Note that it is a feature of Java (rather than JETS) that a number is automatically converted to a
string when joined together with the + operator (said to be 'concatenated'), that is:

"Your height in inches is: " + heightlnches

produces a String result with the primitive (heightInches) converted to a String equivalent.

EXERCISE 2.2
Predict the outcome (type and contents) of the following statements:

result
height
length

"My name is" + "M~chael Moore" + 3;
2.3 * 2;
length + 20 + 3;

Sometimes it is necessary to put non-printing or other special characters into Strings, for example
the code for newline or a quote character("). This is done by using the backslash character as an
'escape' code:

result = "My name is\n" + "Michael Moore\n" + 3;

Will produce a different result when printed. Other common uses of the backslash in a String are:

string produces

\n a new line

\t a tab character

\\ a backs lash

\" a quote

You might need some of these to produce complex Strings such as:

Dhanasun says "Hello" to you\me\everyone

How would you encode this into a String?

48



Computer Science

ARITHMETIC OPERATORS
JETS only uses the following:

operator meaning

+ addition

- subtraction

* multiplication

/ division

% modulus

Divison of two int values produces an int result:

int x = 214;
int y 7;
int z x/y;

z will have the int value 30. The modulus operator returns the remainder after integer division
thus after:

int x = 214;
int y 7;
int z = x%y;

z will have the value 4.

PRECEDENCE
For example, does the statement:

int x = 23 % 5 + 2

mean:

or

int x (23 % 5) + 2

in t x = 23 % (5 + 2) ••• ?

This is not one of those things you can safely ignore and hope for the best since the answer to the
first is 5 and the second 2.

Precedence tells us which operators are done first when there are no brackets. You are surely
familiar with an expression like 23 + 5 * 2 from maths. The multiplication is done before the
addition, it has higher precedence.

The order in Java is %, * and / are done before + and -. If a combination of %, * and / appears in
the same expression, then they are evaluated from left to right:

int x = 23 % 5 * 2

49



Computer Fundamentals

leaves x with the value 6 (and not 3). Of course, as in maths, we can force parts of expressions to
be evaluated first by using parentheses (that's brackets to you and me).

int x = 23 % (5 * 2)

leaves x with the value 3.

EXERCISE 2.3
Evaluate the following statements, stating whether parentheses are necessary:

double x = 23.0 / (5.0 * 2.0);
int x = 9 + 6 - 2 * 8;
intx=9%3* (5/7);
double x = -23.0 - (-5.0 + 2.0)

••••••••••••••
MATHEMATICAL FUNCTIONS
Other mathematical functions are specified in the Maths class, they are:

method use

double, int abs (x)
Returns the absolute value of its argument (if x < 0 then
returns x " -1), x may be double or int.

Returns x raised to the power y. pow( 16.0, .5) returns
double pow (x, y) 4.0 while pow( 2.0,10.0) returns 1024.0, for example.

Operates on double values.

double sin(x) Returns the sine of x, where x is in radians.

double cos (x) Returns the cosine of x, where x is in radians.

Rounds x to the nearest integer. Returns a long type
which you can convert to int, if required, as in:

long round(x)
int i = (int) Math.round(3.45)

(i now has the value 3).

Rounds x to the nearest integer not greater than x.
floor( 9.5) returns 9.0, floor( -9.5) returns -10.0.

double floor(x) Returns a double value which can be converted to int if
required, as in:

int f = (int) Math.floor(x);

CASTING
Means converting from one data type to another. Placing the primitive type in front of the right
hand side of an assignment (as in the last two examples) is known as a cast.

so



Computer Science

Students are expected to know how to use the cast operator. Generally speaking you can always
convert a type that uses less bytes or has a smaller range of values into one that has more bytes or
stores a greater range of values:

int k = 450;
double x = k; II k gets converted to a double

This is an 'implicit' cast, it is done automatically. lmpicit type conversion also occurs in mixed
mode arithmetic:

double x

However, beware:

20.5 * 5;

int x = 23;
int y = 5;
double z = x/y;

z has the value 4.0 because, in assignments, the right hand side is evaluated first and in this case,
performs integer division. The following will give the expected result since it then becomes a
mixed mode expression (x converted to double first):

int x = 23;
int y = 5;
double z = (double) x/y;

In many cases you use a cast to convert a 'bigger' type to a 'smaller' one, accepting the risk that
precision could be lost:

int y = 120;
byte x = (byte) y;

No loss of data, but:

int y = 210;
byte x = (byte) y;

A byte only holds values up to +127 so you get an unexpected result. Java does not warn you
because you used a cast - the compiler assumes you know what you are doing!

PROGRAM STRUCTURE
Let's look at the structure of a complete program. If you want to try this out you will need some
Java software on your computer. For this book (and the IB Computer Science, in general) we have
used the Java Development Kit (JDK) from Sun Microsystems and the BlueJ development
environment (both free):

Software Version Available for free download from:

Java Development Kit 1.3 http://java.sun.com

BlueJ 1.2 http://www.bluej.org

51



Computer Fundamentals

As far as we are aware there is no reason why the examples in this book should not run on later
versions of the software or, indeed, any other Java language system (please check the IBID Press
website for the latest information - http://www.ibid.com.au).

If you open a new project in BlueJ and then create a new Class, you can double click the class
module shown on the workbench and type in the following (or download the code examples from
the IBID Press website URL given above):

/**
* A class which can add 2 numbers together

*
* @author Richard
* @version 060903
*/

public class Add
{

public static void main(Strin~] args)
{

new Add();
}

/**
* Constructor
*/

public Add ()
'{

double numberl
double number2

for objects of class Add

inputDouble(Input the first number: ");
inputDouble(Input the next number: ");

double total = numberl + number2;
output("The total is: II + total);

/**
* IBIO methods, (c) International Baccalaureate 2004
* Computer Science Subject Guide, Appendix 2.
*/

static void output (String info)
{ System.out.println(info);
}

static void output (char info)
{ System.out.println(info);
}

static void output (byte info)
{ System.out.println(info);
}

static void output (int info)
{ System.out.println(info);
}

static void output (long info)
{ System.out.println(info);
}

52



Computer Science

static void output (double info)
{ System.out.println(info);
}

static void output (boolean info)
{ System.out.println(info);
}

static String input (String prom?t)
{ String inputLine = "";

System.out.print(prompt);
try
{inputLine = (new java.io.BufferedReader(

new java.io. InputStreamReclder (System.in))) readLine ();}
catch (Exception e)
{ String err = e.toString();

System.out.println(err);
inputLine = ""

}

return inputLine;
static String inputString(Strin~ prompt)
{ return input(prompt);
}

static String inpu()
{ return input("");
}

static char inputchar(String prompt)
char result =(char)O;
try{ result=input (prompt) .charAt(O);}
catch (Exception e){ result = (char)O;}
return result;
static byte inputByte (String prompt)
{ byte resul t=O;

try{ resul t=Byte. valueof (input. (prompt) trim () ) . bytevalue () ;}
catch (Exception e){ result = O;}

return result;
}

static int inputlnt(String prompt)
{ int result=O;
try{ result=Integer .valueOf input(prompt)trim()) .intvalue() ;}
catch (Exception e){ result = O;}
return result;
}

static long inputLong(String prompt)
long result=O;
try{ result=Long.valueOf (input. (prompt) trim()) .longvalue();}
catch (Exception e){ result = O;}

return result;
}
static double inputDouble(String prompt)

double result=O;
try{ result=Double.valueOf

53



Computer Fundamentals

input(prompt)trim()) .doublevalue();}
catch (Exception e){ result = a;}
return result;

}

static boolean inputBoolean(String prompt)
{ boolean result=false;

try{ result=Boolean .valueOf
input (prompt) trim(()) .booleanvalue()

catch (Exception e){ result = false;}
return result;

Students do not need to know these IBIO methods or even understand how they work.

We will not explain all the examples in the book in detail since this is not a Java Book as such,
however, we will provide resource materials for teaching Java in the future, please watch the
IBID Press website for further details. Our purpose here is to explain and illustrate the assessment
statements in the syllabus, much as we did in our First Edition when PURE was the IB 'language'
of choice.

However, it is an excellent idea to experiment with the examples given in this chapter and chapter
5 for Higher Level.

Let's just look at a couple of features of the program in a little more detail:

/**
* A class which can add 2 numbers together

*
* @author Richard
* @version 060903
*/

These comments are used to automatically generate documentation of the Class using a system
known as JavaDoc. The @ tags and other information are used to convert the comments into html
in a pre-defined format.

Further discussion of this topic is outside the scope of the book (see http://java.sun.com for
further details).

public class Add
{

public static void main(Strin~] args)
{

new Add () ;

The main function always has this form, it defines a Class which can be run as a program. This
main method calls the constructor:

/**
* Constructor for objects of class Add
*/

public Add ()
{

54



Computer Science

double numberl = inputDouble("Input the first number: ");
double number2 = inputDouble("Input the next number: ");
double total = numberl + number2;
output ("The total is: " + total);

The constructor is a special method that has the same name as the Class and does not contain any
other qualifiers except public. Should you forget to add a constructor, Java will automatically
supply an empty, no argument one for you in the 'background'. The constructor is called
whenever a new instance of the Class is needed:

new Add () ;

It is subtle and very hard to trace bug to create a 'normal' method in place of a constructor:

public class Add
{

public static void main(Strin~] args)
{

new Add () ;
}

public
{

double
double

void Add ()

numberl
number2

inputDouble("Input the first number: ");
inputDouble("Input the next number: ");

double total = numberl + numter2;
output("The total is: " + total);
}

This program will compile just like the other (as long as the IBID methods are added too), but
nothing will appear to happen (and all because of one, carelessly added keyword!).

Avoid this problem by never using the class name in a method you write (unless it is meant to be
a constructor, of course).

SEQUENCE
Where statements or actions in an algorithm simply flow from one to the next, this is known as a
sequence of instructions. Often the sequence can be important:

public Add ()
{

double numberl = inputDouble("Input the first number: ");
double number2 = inputDouble("Input the next number: ");
double total = 0;
output("The total is: " + total);
double total = numberl + numter2;

This algorithm does not produce the required result.

55



Computer Fundamentals

Any program can be represented in a modular design, even one as simple as this.

1**
* A class which can add 2 numbers together

*
* @author Richard
* @version 060903
*1

public class AddModular
{

II Change I-need to declare variables here-in Class definition
II Class variables, availablE to every method of the Class
double numberI, number2, total;

public static void main(Strirg[] args)
{

new AddModular();

II Change 2 call the methods from the constructor

1**
* Constructor for objects of class AddModular
*1

public AddModular()
{

obtain();
calculate();
display();

}

1**
* Method to obtain two numbers
*1

public void obtain()
{

numberl
number2

inputDouble("Please input your first number: ");
inputDouble("Please input your second number: ");

}

1**
* Method to add two numbers
*1

public void calculate()
{

total = numberl + number2;
}

1**
* Method to display the total
*1

public void display()
{

output("The total is: " + ~otal);

56



Computer Science

1**
* IBIO methods, (c) International Baccalaureate 2004
* Computer Science Subject Guide, Appendix 2.
*1

(as before, cut and paste these methods in)
}

Modularity is a powerful technique for writing programs, although it is possibly overkill here. At
least the Class adheres to the good principle that a method should do only one task.

CONSTRUCTING A MODULAR PROGRAM
The IE Computer Science program requires students to analyse and solve problems rather than to
write code solutions to simple programming exercises. When students are beginning to learn a
language, they are naturally given small scale exercises in keeping with their limited knowledge
of the structures and constructs available. However, it is possible to encourage students to think
about design issues right from the start.

As an example consider the small problem of adding two numbers together, a typical beginners
exercise. Students can be taught to break this down into input-process and output sections:

Figure 1.10

ADD PROGRAM I

ADD TOGETHER I -

Rudimentary concepts of program testing and evaluation can also be introduced at this stage. As
the programming exercises increase in complexity, other stages (analysis and user
documentation, for example) can also be brought lll. This way, by the time students come to
write their dossiers, they have already become accustomed to the software development life
cycle.

While it is quite possible to apply these techniques, which are associated with procedural type
programming, to Standard Level student projects, It is probably better to introduce HL students to
the concepts associated with object oriented programming right from the start. The debate goes
on at first year University level as to whether objects should be introduced to students early or late
(or, indeed, in the middle). There are textbooks (very many textbooks) which favour one or
another of these methods out there. You can visit http://www.ib-computing.com for details of
books currently favoured by IE teachers.

SCOPE OF IDENTIFIERS
Notice that it was necessary to move the primitive declarations

II Class variables, available to every method of the Class
double numberl, number2, total;

57



Computer Fundamentals

to the Class definition (opening) section. If they had remained declared in the constructor (public
AddModular), they would not have been 'visible' (in scope) for the other methods - obtain,
calculate, display.

In general, identifiers and other types are restricted to the program block (including methods) in
which they are declared:

public void calculate()
{

double total = numberl + number2;
}

The identifier total is only valid within calculate. If another total is used elsewhere, it counts as a
different identifier:

public void display()
{

double total;
output("The total is: II + total);

Not the same total. This can lead to errors which are hard to track down so always think carefully
about declarations like the one above: "Do I really want a new total or should I be using the Class
data member instead?"

PARAMETERS
One way of passing a variable to another method is to use a parameter:

public void display(double total)
{

output("The total is: II + total);

Now total has to be 'passed' to the function display, as in:

public void calculate()
{

double total = numberl + m.:mber2;
display(total);

or even:

public void calculate()
{

display(numberl + number2); II call to display method

Using an expression such as numberl + number2 only applies to primitive identifiers,
however. The identifier or expression that appears where the function is 'called' is often termed
the 'argument' or sometimes the 'actual parameter'.

The parameter acts like a local identifier whose scope is the method body, therefore, as we shall
see later, a parameter can mask or shadow a Class data member:

58



computer ~clence

public void display(double total)
{

II if there is a Class data member called total
II it's not visible here!

output("The total is: " + total);

Methods may also return a value. They do this by replacing the keyword void with the type of
value that they return. For example, a function to add two numbers together could be written:

public double calculate(double Lumberl, double number2)
{

return (numberl + number2);

The call might then look like this:

double total = calculate(5.0, 6.8)

Which has the effect of placing the value 11.8 in the identifier total. Clearly, this gives us very
many different ways of writing the AddModular program.

CLASS ACTIVITY
Re-write the AddModular program using the above techniques. Compare the ones that worked.
How many different and valid ways are there to wnte it. Challenge: can anyone write the entire
program as a single line called from the constructor? Is there any advantage in doing this?

EXERCISE 2.4
The variable declarations have been left out of this algorithm, what should they be?

public TempCon()
{

???? tempType = input("Enter a C or an F: ");
???? temp = inputDouble("Enter a temperature: ");
???? result;

if ( (tempType.equals ("F")) I I (tempType.equals ("f"))
resul t temp * 9.0 I 5.0 + 32.0;

else
result (temp - 32.0) * 5.0 I 9.0;

output("The converted temperature is: " + result);

Rewrite the algorithm to use three modules corresponding to input, process and output.

59



Computer Fundamentals

METHOD SIGNATURES
The line where the function parameters and return type are defined is known as the method
signature.

public void calculate();
public double calculate()
public void calculate (double numberl, double number2)
public double calculate(double numberl, double number2)

are all different methods and could all be used within the same program. If you were astute (or
even awake) you might have wondered about all those output methods in Class IBIO in our first
full program example. The correct one is called, depending on the type of the argument. This
process is known as method overloading.

SELECTION
This is the use of different sets of instructions depending upon a given condition (which can have
one of just two outcomes - true or false). Selection is also referred to as 'branching'. Consider
these examples:

Simple if .. endif

if (temp < 5)
output("It is cold today");

If the value of the primitive temp is 4 or less, the message is output, otherwise nothing happens.

Using an else clause

if (age> 20)
output("you are old");

else
output("you are young");

if (mark < 40) then
output("you failed");

else
output ("You passed");

If the condition evaluates to 'true' the first pass is done, otherwise the statements after el se are
done.

60



Computer Science

You can use the following comparison conditions:

operator

<

>

----

!=

less than

greater than

equal to

not equal to

meaning

<=

>=

less than or equal to

greater than or equal to

On it's own acts as a not operator, ie
turns true to hllse and false to true

It is a very common programming error to use = when == was meant and it can be very hard,
under some circumstances, to spot such an error.

Sometimes the conditions (the parts in brackets) can be combined with && (and) or II (or)
operators.

if ((mark < 0) I I (mark> 100))
output("Not a valid mark");

if ((mark < 75) && (mark> 65))
output ("Your grade was a B");

As we saw in the earlier section, arithmetic operators have precedence, and so do logical ones,
&& is evaluated before II.

Anywhere a single statement can occur in Java, a compound statement, enclosed in braces
(squiggly brackets to you and me) can also occur:

if ((mark < 0) I I (mark> 100))
{

output("Not a valid mark");
output("Please try again");

}

else

//stuff to process input value

61



Computer Fundamentals

EXERCISE 2.5

Re-write the following flowchart algorithm as a java program

,-__s_t,art_~

input7
distance
travelled

no
distance < 100?

cost =I
distance*~

output]
cost

,-__s_to_p_~

cost =
distance * 25

••••••••••••••
NESTING
Nesting occurs when one control structure is placed inside another (if and if else are control
structures).

Consider this algorithm which attempts to determine if you can afford to go out tonight:

final static int CASH LIMIT = 50;

String choice = input (liDo you feel like going out? (yin) ");

int cash = inputInt("How much cash do you have? ");

if ((choice.equals("y")) I: (choice.equals("Y")))
&& (cash >= CASH_LIMr~) )

output("You said yes and you have II + cash + II dollars");
output("Come on then");

f.')



Computer Science

else
output("OK let's see what's on TV");

A new point first:

final static int CASH LIMIT = 50;

final static identifiers like CASH_LIMIT are useful when you have constant, unchanging
values in your programs. They improve readability and allow you to make changes more easily.
You can expect to see them used in examination questions.

The above could also have been written

final static int CASH LIMIT 50;

String choice = input ("Do you feel like going out? (yin) ");

int cash = inputInt("How much cash do you have? "I;

if ((choice.equals ("y")) II (choice.equals ("Y")))
if(cash >= CASH LIMIT) )
{

output ("You said yes, you have" + cash + " dollars");
output ("Come on then");

else
output("OK let's see what's on TV");

Braces can be used to improve the readability of nested control structures, even where they are
not strictly necessary:

if ((choice.equals ("y")) II (choice.equals ("y")))

{

if(cash >= CASH_LIMIT)
{

output("You said yes, you have" + cash + " dollars");
output("Come on then");

}

else

output ("Oh, that won't be enough");

else

output ("OK, le~ s see wha~ s on tv");

Java and JETS code can be written very concisely: always choose to make code more readable
than more concise. This is excellent practice for university and industry since people may have to
review, read or modify your code and they would hke to spend as little of their time as possible in
understanding it.

63



Computer Fundamentals

In addition, the teacher in your classroom is a precious resource (really, you will appreciate this
even more when writing your dossier!) - don't waster her/his time on concise but hard to
understand code.

EXERCISE 2.6
What is the output of this code:

int x = 9;
int y 0;
int z = 3;
char c = 'x';

if (x == 9)

if (y < 3)

if (c != 'x')

output("flip");
else

if (z >= 3)

output ("flop");
else

output("fly");

Improve its readability by the judicious use of braces .

••••••••••••••
MULTIPLE SELECTIONS
When making multiple selections, if statements can become quite complicated. Much more
useful than the pattern:

if
if
else

is the pattern

if
else if
else if

sometimes known as an else if chain. This is very useful when multiple choices need to be made.
For example, get the user to enter a number of choices and respond to them (a menu):

String place = input(" Where do you want to go today: H);

if (place.equals("m")
output(" To the movies");

else if (place.equals("c")
output(" To the cafe");

else if (place.equals("p")
output(" To the park");



Computer Science

else
output("I don't know where that is");

Java and other languages have multiple selection statements such as switch or case that work in a
very similar way but we won't use them here as they are not included within JETS. Of course,
you can use them in dossier programs where appropriate to do so.

Notice that the chain stops as soon as a true condition is found.

if true
this

else if true
this

else if true
this

else
finally

next statement

EXERCISE 2.7

II if this is true
II do this then skip to the end
II same pattern here, if true
II do this and skip, otherwise
II try this one...

II none of the above were true
II 'defaul~ action

At a certain store, they sell blank CD's with the following discounts:

• 10% for 120 or more

.5% for 50 or more

• 1% for 15 or more

• no discount for 14 or less

Complete the outline:

int discount 0;
int quantity 0;
int quantity input("Input the number of discs bought: ");
if (???????????????)

discount = ??;

else if (???????????????)

discount = ??;

else if (???????????????)

discount ?? ;

else
discount ??;

Don't forget to add proper braces to the completed exercise.

••••••••••••••

65



Computer Fundamentals

Conditional expressions, for example:

if (a > b)

big a;
else

big b;

are so common in Java that a special expression is sometimes used (borrowed from the C
language):

big = (a > b) ? a b;

The general form is:

result = <condition>?<result if true>:<result if false>

It is a perfectly valid construct and you may see it elsewhere, however, we will not use it here and
you will not find it in JETS (and therefore exam questions). There is nothing to stop you using it
in exam responses if you wish. Just make sure you know what you are doing and write clearly.

As noted above, the other Boolean operator that we have is !, which can be used to reverse a
logical value from true to false (or vice versa):

if ! ( (MARK >= 0) & & (MARK <= 100) )
{

output("Not a valid mark")

REPETITION
Repeating things again and again until some condition is met or while some condition is true.
Basic structure of a loop:

while <condition>

do this
}

where the <condition> is exactly the same as for the if test.

int x = 1;
while (x < 10)

output ( x );
x *= 2;

How many times is this loop executed?

The less common but sometimes necessary alternative loop is:

int x = 1;

do

66



Computer Science

output ( x );
x * = 2;

}

while (x < 10);

The difference between the two loops is that the do while loop is always done at least once
(because the test to repeat is at the end) whereas the while loop may never be executed.

'TRACING LOOPS
The following technique can be used to sum values:

int sum = 0;
int next = inputlnt("Input first number: ");

while (NEXT> 0) II start control loop

sum = sum + next II add it in
next = inputlnt("Input next value: ") II get next value

output("the sum is: " + sum); II display result

Notice that this requires a list of numbers to be input, ending with a 0 or negative value which will
then terminate the loop.

Tracing an algorithm means to work out what the values of variables will be in each step as a
means of understanding how it works. You should do this when you are designing algorithms for
your dossier and will need to apply the technique in your final examination.

Trace the algorithm with the values 4, 78, 2, -2, 4 .. 0, 9

next next> O? sum output

4 - 0 - initial conditions

4 TRUE 4 - first time round the loop

78 TRUE 82 -

2 TRUE 84 -

-2 FALSE 84 84 terminates

Modify the above algorithm to count the number of numbers entered and also give the arithmetic
mean (SUM/COUNT). Trace the algorithm with the values 14,54,7,0,23,12,-1.

The for loop will repeat itself a set number of times by counting a variable up or down:

for (int x = 4; x > 0; x = x - 1)

You will normally see this written:

for (int x = 4; x > 0; x--)

but the IBO have indicated that they will not use tl1ese increment and decrement operators.

67



Computer Fundamentals

However, you are going to see them and probably use them in your dossiers as they are very
handy:

operator meaning

++x
increase x by 1, then use the new
value of x in evaluation

use the old value of x in evaluation
x++

then increase by one

--x
decrease x by I, then use the new
value of x in evaluation

use the old value of x in evaluation
x++

then decrease by one

also note:
operators can be combined with
assignment

x += 2 x=x+2

x *= 2 x=x*2

etc.

The for type of loop is most useful when you know in advance how many times the loop is to be
repeated. It can always be replaced with either the do while or the while loop.

That is:

for (int x = 4; x > 0; x
y = z - 2;

is exactly equivalent to:

x = 4
while (x > 0)

y = z - 2;
x = x-I;

CLASS ACTIVITY

x + 1)

Set up a trace table to work out what this program does:

/**
* A class which illustrates use of methods, a mystery method

*
* @author Richard
* @version 060903

68



Computer Science

*/
public class Mystery
{

public static void main (StriWJ[] args)
{

new Mystery();
}

/**
* Constructor for objects of class Class Mystery
*/

public Mystery()
{

String message = input("Please type a message: ");
output("The result of mystery is: " + mystery(message));

public int mystery(String message)
{

int count
int len
for(int p
{

= 0;
message.length();
= 0; p < len; p++)

if (message.charAt(p) == 'A')
{

count = count + 1;

return count;

/**
* lBlO methods, (c) lnternatio1al Baccalaureate 2004
* Computer Science Subject Guide, Appendix 2.
*/
include them here ...

WORKED EXAMPLE
Write an algorithm which will:

1. input a request for two examination marks, markl and mark2

2. multiply markl by 0.75

3. multiply mark 2 by 0.25

4. add together a new total from the new values for markl and mark2

5. output a message that candidate has passed or failed, based on a pass mark of 45 for the
new total

69



Computer Fundamentals

Tip: When writing JETS it's a good idea to kave blank lines in your solution so you can add
bits you forgot! Also doing a first run through in pencil helps.

Notice how the code follows the description quite closely:

public class PassFail
{

public static void main (String[] args)
{

new PassFail();
}

/**
* Constructor for objects of class PassFail
*/

public PassFail()
{

int markl
int mark2

double ml
double m2
int total

inputlnt("Please input the first mark: ");
inputlnt("Please input the first mark: ");

markl * 0.75;
mark2 * 0.25;
(int) (markl + mark2);

if (total >= 45)
output ("You passed");

else
output ("You failed");

}

/**
* IBIO methods, (c) International Baccalaureate 2004
* Computer Science Subject Guide, Appendix 2.
*/

include here ...

CLASSES, USER-DEFINED METHODS AND OBJECTS
We have already seen examples of user-defined methods when we looked at the topic of
parameters. The language also has built-in functions like the one that returns the length of a
string:

int len = message.length();

The method length is built in to most high-level languages as well as into the Java String Class.
Most high-level languages have a range of built in subprograms; some of them, such as
FORTRAN, are particularly rich in mathematical and scientific functions.

Sometimes the term 'function' is used to distinguish a method that returns a single value and thus
has a return type. It could be said that the method length is an integer function returning the
length of a string of characters.

70



Computer Science

Notice that the method length requires an object of the String Class to 'work on'. Some methods
can be used directly with the name of the Class:

double x = Math.pow( 9.0, 2.0);

Math is the name of a class rather than an object. This type of method is declared as static - i.e.
there is a method somewhere in the Math class like this:

public static double pow( double x, double y)

Maybe it's time we looked more closely at objects. Consider our Add Class:

introductory comments

/**

* A class which can add 2 numbers together

*

* @author Richard

* @version 060903

*/

define a new class

public class Add

main method required for an application class - Le. a class that does something.

public static void main (S":ring[ ] args)

{

new Add () ;

}

/**

* Constructor for object:3 of class Add

*/

This is the constructor method.

public Add ()

71



Computer Fundamentals

It has the name of the class

double numberl
inputDouble("Please input your first number: ");

double number2 =
inputDouble("Please input your second number: ");

It creates an Add object

double total = numberl + number2;

output (liThe total is: II + total);

}

end of class definition

It is possible to have a Class with no main method as we shall see. A Class is like a blueprint or a
plan, it is a definition of how to build something. An object is said to be an instance of a Class.
Objects are created via a call to new, followed by the constructor name.

Here is a picture of the Bluel screen
showing some of the classes we have been
using to illustrate this chapter:

Notice that there are two add objects
(instances) at the bottom of the screen (the
workbench). These were produced by
running the Add class from the main
screen. A Class can be used to create as
many objects as needed, just like a
blueprint can be used to build many houses.

Examples of objects that don't run are String and Math.

As an illustration of a user-defined object, we are going to create a new data type called Time.
This we can declare in our programs just like Strings and primitives:

String name = "John";
Time now = new Time("ll", "am")

Notice that Strings are a bit special in not having to call new to create a new String object. There
are, however, other ways of constructing or creating objects of the String class.

When we have defined the class we will add a method that gives us the difference between two
times on the same day to the nearest whole hour. Notice that this Class is of very little use in a

72



Computer Science

practical program - that's deliberate. We wouldn't want to reduce the fun you will have in
developing your own useful Time Class!

Objects need to keep track of their current state, therefore they need identifiers internally; we
shall keep the following data about the time:

the hour as a String

• the hour as an int (for calculations)

• the indicator for am and pm as a char (a or p)

If we ask BlueJ to create a new Time Class for us we get the following very nice framework:

1** ,
* Write a description of class Time here.

*
* @author (your name)
* @version (a version number or a date)
*1

public class Time
{

II instance variables - replace the example below with your
ownprivate int x;
1**
* Constructor for objects of class Time
*1

public Time ()
{

II initialise instance var~ables

x = 0;

1**
* An example of a method-ref lace this comment with your own

*
* @param
* @return
*1

public int
{

y a sample pararr.eter for a method
the sum of x and y

sampleMethod(int y)

II put your code here
return x + y;

Teachers (and students) might like to note that they can customize this template (see the BlueJ
documentation for details). A customized template for IBIO classes will be found on the IBID
Press website.

73



Computer Fundamentals

The identifiers we need are included in the Cla~s definition:

1**
* Class Time is used to store a time as an hour of the day

*
* @author Richard
* @version 070903
*1

public class Time
{

II Properties of our Time
private String sHour;
private int iHour;
private char indicator;

Class
II hour as a String
II hour as an int
II indicator for amlpm

The keyword private is used to prevent access from outside the Class. If we make them public
then they could be changed in a statement like:

Time t = new Time();
t.iHour = 11;

which we don't want. If we allow public access, then another (careless) user of the Time Class
could set the iHour identifier to an incorrect value (like -34, for example).

The Class itself is public, otherwise it couldn't be used by other Classes. The constructors will
also be public for the same reason. We need a constructor for the initialization we presented
earlier:

Time now = new Time("11", "am")

Clearly this takes two String parameters:

public Time (String hr, String id)
{

sHour = hr;
indicator = id.charAt(O);

This is OK but it might be a good idea to check if the user has entered a valid time:

public Time (String hr, String id)
{

II convert the hour string to an int,
II trim any spaces of id and convert to lower case
II then check the range of both
int ih = Integer.parselnt(hr.trim());
id.toLowerCase() .trim();

if ( (ih < 0) I I (ih > 11)
&& ! ((id.equals ("am")) I I (id.equals ("pm")))

{

II invalid time, set time to midnight
setTimeMidnight();

74



Computer Science

else
{

II everything OK, set the time values
sHour = hr;
iHour = ih;
indicator = id.charAt(O);

Integer is a special class for dealing with int types, it includes the method parseInt(String) to
convert a String to an integer. We also use the helper method setTimeMidnight here:

private void setTimeMidnight()
{

sHour = "00";
iHour = 0;
indicator = 'a';

This demonstrates that a method can be private too - this method cannot be accessed from outside
the class (no special reason why this one should not be - just wanted to illustrate the point). It is
good practice to keep everything private if practical- always operate on a 'need to know basis' as
far as external classes are concerned.

We can also supply a 'no argument' constructor:

1**
* Constructor for objects of class Time
*1
public Time ()
{

II initialise instance variables to midnight
setTimeMidnight();

So that a new time object can be created with a time of midnight. The method that returns the
state of a time object as a String needs to be public (why?):

1**
* Method to return the time as a String

*
* @return the time as a Strine
*1

public String toString()
{

String s_indicator;
if (indicator == 'a')

s indicator = "AM";

else

7S



Computer Fundamentals

s indicator "PM";

return (sHour + " " + s indicator);

Now we can test that our Time Class actually works:

/**
* A class to test the Time Class

*
* @author Richard
* @version 070903
*/

public class TestTime
{

public static void main(String[] args)
{

new TestTime();
}

/**
* Constructor
*/

public TestTime()
{

String sHour = input("Please input the hour (0-11): "I;
String indicator = input ("Please indicate am or pm (a, p)

") ;

Time now = new Time (sHour, indicator);
output("The time is " + now.toString());

/**
* IBIO methods, (c) International Baccalaureate 2004
* Computer Science Subject Guide, Appendix 2.
*/

include here ...
)

EXERCISE 2.8
Extend the Time Class so that an instance of the class can calculate the difference in hours
between itself and another instance:

public int timeDifference(Time time2)

A program might test the method this way:

int timeDiff
Time time1 new Time("l}", "AM");
Time time2 = new Time("8", "PM");
timeDiff = time1.timeDifference(time2);

You could use such a class in a dossier for a company that hires out equipment by the hour.

••••••••••••••
76



Computer Science

CLASSES AND EXCEPTIONS
This topic is not part of JETS but is included for completeness.

The main idea behind using objects, such as the TIme class is to hide the detailed operation of the
code from other classes. This is a powerful way of increasing the robustness of software.

However, sometimes things go wrong. Another programmer, misunderstanding the way in which
the class works, might try something like this:

Time time1 = new Time ("AM", "11");

We could simply put an error message within the Time class using our output statement from
IEIG. The problem with that is, we don't know if it's being used in a console-based program or
not. Also maybe the other programmer doesn't want your error messages cluttering his screen.
Therefore, we need a communication mechanism.

Exception objects offer such a mechanism. Exceptions are thrown (constructed) whenever
something goes wrong, you might have noticed this if you are running a console-based example
and type in an invalid number. For example, typing an an invalid number in our TimeTest
example results in a NumberFormatException with the message 'invalid integer'. You can see
this at the bottom of the code screen if you use BlueJ.

Exceptions can be caught and dealt with. Consider the IEIG inputInt method:

static int inputlnt(String Prompt)
{

int result=O;

try
{

result = Integer.parselnt (input (Prompt) .trim());
}

catch (Exception e)
{

result = 0;

return result;

The try block is put around code that can generate an exception. Ifthe exception actually occurs,
it can be dealt with in the catch block. More than one exception can be caught if necessary.

If you, as a programmer, don't deal with the exception it is passed up to the next level (in the case
of our runnable classes this is dealt with by the System class).

You can also choose to explicitly ignore the exception by having a method throw it (we'll deal
with this later).

We can develop our own exceptions by extending Java's Exception Class, for example:

/**
*
*

TimeClassException.

* @author richard



Computer Fundamentals

* @version 070903
*1

public class TimeClassException extends Exception
{

public TimeClassException()
{

super();
}

public TimeClassException(String message)
{

super(message);

Now we can use this in the Time Class, modify the constructor:

public Time (String hr, String id) throws TimeClassException

and add this line further down:

II invalid time, set time to midnight
setTimeMidnight();
throw new TimeClassException("Error: invalid time");

If you try to compile TestTime now, this line will generate an error:

Time now = new Time (sHour, indicator);

Because the TimeClass Exception has to be dealt with, either caught by the method or thrown:

Add this:

public TestTime() throws TimeClassException

Now try to compile again. What happens? The main method complains because that is the
method that called the TestTime constructor.

Adding this:

public static void main(Strinq[] args) throws TimeClassException

allows the program to at least compile. However, the TestTime Class can (and should) deal with
the problem, maybe like this:

try
{

Time now = new Time (sHour, indicator);
output("The time is " + now.toString());

}

catch(TimeClassException e)
{

output(e.getMessage());

78



Computer Science

Although we have used a somewhat roundabout route to achieve the same outcome (posting a
message to standard out), the exception mechanism does give more flexibility. It allows the
programmer to choose where the exception will be dealt with. Why did we say above that the
TestTime Class should deal with the exception rather than any other class, e.g. the System Class?

EXERCISE 2.9
Instead of simply catching the exception and outputting a message, try to modify the
TestTime Class so it repeats trying to get a time until a valid time is input by the user.

STATIC METHODS
A couple of times now we have seen methods attached to class names, like this:

Integer.parselnt(String)
Math.pow(double, double)

This is achieved by use of the keyword static before the member name. As an example, if we
wanted to use the timeDifference () method in the Time Class without actually
instantiating a Time object, we could declare the method like this:

public static int timeDifference(Time time1, Time time2)

A program might test the method this way:

new Time ("11", "A~");

new Time("B", "PM");
Time.timeDifference(time1, time2);

int timeDiff
Time time1
Time time2
timeDiff =

JETS specifies some standard methods and data members of the String class that students should
be familiar with:

method return type description

.equa1s(String) boolean
Returns true if the Strings are equal. Do not
use the comparison operator (==) with Strings.

.substring(int,
The first returns the string between the start
point (first argument) and end point (second)

int) String of the String object it operates on. The second

.substring(int) version returns the substring from the position
to the end of the target String.

. length () int Returns the length of the String .

. indexOf (char)
Returns the position(index) of the first

int
character matching the argument. The second

. indexO f (char, int) version starts the search at the index specified
in the second argument.

79



Computer Fundamentals

method return type description

Compares one String to another for equality, if

.compareTo(String) int
the argument is less than the target String it
returns a negative integer, if greater, a positive
integer. If they are equal it returns O.

. toUpperCase () none
Converts a String object to Upper Case
(capital) letters.

.toLowerCase none
Converts a String object to lower case (small)
letters.

Those methods which take a String index value (e.g., substring) throw a
StringIndexOutOtBoundsException ifthe index is outside the target String, e.g.:

String name = "Hye Rim Nam";
String middle = name.substring(4, 6); II value "Rim"
String error = name.substring(l2); II throws exception

Notice that String indices start at 0 (not 1).

Candidates are not expected to memorise these functions for the examination. If an algorithm
question requires their use or uses them, a 'recall' description will be given, e.g.:

RecallthatMath.pow(double x, double y) returns the double value ofxraised to the
powery.

Two other useful methods which we have already seen are:

method return type description

.trim() none
Removes leading and trailing whitespace
(spaces, tabs) from a String.

.charAt(int) char
Returns the character at the position
specified in the argument.

PRIMITIVES VERSUS OBJECT REFERENCES
We referred earlier to the important difference between primitives and objects. The object
identifier really contains a reference to an area of memory where the data is stored.

Time timel;

Creates the reference identifier; no object has been instantiated (created) yet. In order for a new
object instance to be created the constructor must be called:

Time timel;
timel = new Time();

80



Computer Science

We could create a second reference and copy the address into it:

Time time2;
time2 = timel;

They both point to (reference) the same area of memory so are, therefore, the same object. If you
want to check it out, try this:

String sHour = input("Please input the hour (0-11): H);
String indicator = input("Please indicate am or pm (a, p): H);

try
{

II set up timel with the new time
Time timel = new Time (sHour, indicator);
output("The time is " + ti~el.toString());

II Create a new time reference (not an Object!)
Time time2 = timel;

II Change time2 (and therefore timel)
time2.setTimeMidnight();
output("The new time is " + timel.toString());

II NB I had to change the rime Class to make
II setTimeMidnight() a public method!

}

catch ( 1* as before * I

ARRAYS OR LISTS OF VALUES
A array is a group of variables, all of the same type, which share a common name. An example of
an array of ints called marks:

marks

element
~~

[0] [1] [2] [3] [4] [5]

status

The array element marks[4] in this example has the value 43. Arrays can hold any of the
fundamental data types or can equally well be collections of data structures such as strings or
records.

For example a boolean array of equivalent size could be:

False False [~True False True

element [0] [1] [2] [3] [4] [5]

The great advantage of arrays over simple data types is that they can be easily processed inside a
loop rather than having separate variable names like mark1,mark2, mark3 etc.

81



Computer Fundamentals

Arrays can also be multi-dimensional. A two-dimensional array might be useful to hold a set of
positions in a board game, for example:

1 0

0 1

1 0

Board

[0]

[1]

[2]

[0]

§
[1] [2]

For a two-dimensional array board[r][c] the indIces are in row, column order, thus board[O][l] has
the value 1 rather than 0 which is in board[l][O].

Arrays of 3 or more dimensions are also possible but not required for an IB Computer Science
course.

One of the most important things to remember about arrays is that all of the elements have to be
of the same type.

ARRAY EXAMPLE
A list of names can be placed in an array as follows:

String[] names new String[ 51

for(int i = 0; i < 5; i = i + 1)
{

names[ i] input("please input a name: ");

output("The second and fourth names input were: II

+ names[ 2] + ", II + names[ 4] ) ;

Suppose you input the following to this program:

please input a name: richard
please input a name: aruna
please input a name: minh
please input a name: sayaka
please input a name: dorian

The output is:

The second and fourth names input were: minh, dorian

Which might not be quite what you expected. In Java, as in C/C++, arrays are 'zero-based', that
is the first element is 0, rather than 1 as it might be in Pascal or PURE.

Therefore names[2] is the third entry:

names richard arona minh sayaka dorian

[0] [1] [2] [3] [4]

R2



Computer Science

An array can only hold values of one primitive data type or of one particular class.

EXAMPLE
Devise an algorithm which finds the largest value in a given array (list) of numbers. To help you,
here is an algorithm which finds the smallest in a given array of numbers called listA:

listA is assigned the values 3,67, -9,304, -56, 2 as shown in the example:

II initialise an int array with values
int[] listA = new int[] {3, 67, -9, 304, -56, 2 } ;
int pos = 1; II pointer to the array
int smallest = listN 0] II smallest so far

while (pos < 6)

if (listN pos] < smallest)

smallest = listN pos]
}

pos = pos + 1;

output("The smallest number in the list is: " + smallest);

Tracing the algorithm inside the loop

pos smallest listA[pos] listA(pos] < smallest Comment

I 3 67 TRUE small is changed to 3

2 3 67 FALSE small is unchanged

3 3 -9 TRUE small becomes -9

4 -9 304 FALSE small is unchanged

You should be able to finish off the trace table. When you have completed your algorithm to find
the largest value in a given array, draw and complete a similar trace table to confirm that 304 is
correctly calculated to be the largest value from the above listA.

EXERCISE 2.10
How could the above algorithms also calculate which position in the array was holding the
largest/smallest value? Show where your algorithm needs to be modified to do this ................

83



- or data members
II title of the video
I I :cn minutes
II lS it lent to someon

Computer Fundamentals

RECORDS AND CLASSES
A record structure was defined as follows in PURE:

newtype STUDENTRECORD record
FORENAME string
SURNAME string
BIRTHDATE string
SEX character
FORM character

endrecord

The record structure is an example of a 'composite data structure' in IB Subject Guide
terminology.

Although this term is less apparent in JETS, there is still a dossier mastery aspect related to the
use of this type of data structure, so we will consider how it could be implemented in a Java
program.

The Classes we have looked at so far have mainly been applications Classes which are run.
However, many other types of Class are possible in Java, Classes which don't actually run like
applications do. Consider the following VideoTape Class:

1**
* A Class to keep details of video tapes
* @author Richard
* @version 200903
*1

public class VideoTape
{

II instance variables
private String title;
private int length;
private boolean lent;

1**
* No argument Constructor for objects of class VideoTape
*1

public VideoTape()
{

II initialise instance variables
this.title = null;
this.length = 0;
this.lent = fals€;-

}

1**
* Constructor for objects of class VideoTape
*1

public VideoTape (String ti~le, int length, boolean lent)
{

setTitle(title);
setLength(length);
setLent(lent);

84



Computer Science

/*
* Mutator methods change the objects data fields

*/

/**
* set the title

*
* @param String title the video title

*/
public void setTitle(String title)
{

this.title = title;
}

/**
* set the length

*
* @param int the video length in minutes
*/
public void setLength(int lergth)
{

this.length = length;
}

/**
* set the status of lent

*
* @param boolean lent true if the video is on loan
*/

public void setLent(boolean lent)
{

this.lent = lent;
}

/*
* Accessor methods return the objects data fields
*/

/**
* Return the title

*
* @return String the video title
*/

public String getTitle()
{

return this.title;
}

/**
* get the length

*
* @return int the video length in minutes
*/

public int getLength()

8S



Computer Fundamentals

return this.length;
}

/**
* get the status of lent

*
* @return boolean lent true if the video is on loan
*/

public boolean isLent()
{

return this.lent;

Notice that we have used a special keyword to refer to Class data members:

public int getLength()
{

return this.length;

This is not strictly necessary but is good practice and avoids any problems where a local identifier
or parameter might shadow or mask the Class data member:

public void setTitle(String title)
{

this.title = title;

In the above method, the parameter title has the potential to mask or shadow the Class data
member title. This qualifier makes sure the parameter value is assigned to the Class data member.

There is no main method to run this Class - it doesn't actually do anything. However, it is
possible to create an array of these objects to store Video Tape data.

EXERCISE 2.11
Add some validation to the VideoTape Class. Get the constructor to throw an exception if
invalid data is passed (e.g. the video length is negative).

a.aa ••••••••••

EXAMPLE OF USING VIDEOTAPE OBJECTS
The private data members of this class are an array of VideoTape objects and the number of
videos currently in the collection. The maximum number which can be stored is determined by
MAX_VIDEOS, a static final (constant) value. This can be changed to store more.

/**
* A class to store Video Tape data in an array

*
* @author Richard
* @version 200903



Computer Science

*1
public class VideoStore
{

static final int MAX VIDEOS = 5;
private VideoTape[] videoTapEs = new VideoTape[MAX VIDEOS];
private int numVideos = 0; Ii number of videos in collection

public static void main (String[
{

new VideoStore();

args)

The constructor typifies a menu-driven approach to an application. It loops, getting commands
and executing them until a quit command is issued. This is a simple but effective technique for
data-based applications.

1**
* Constructor loops until command "quit" is used
*1

public VideoStore()
{

char command;
do

command = getCommand();
doCommand(command);

while (command != 'q');

Get command outputs suitable prompts and gets the users command. This is validated and if the
command is not recognized, the method loops back and tries again.

1**
* Method to get a valid commard from the user

*
* @return char, a valid commard - a, 1 or q
*1

private char getCommand()
{

char Chi II input commmand

II repeat until a valid command is entered
do
{

output("");
output ("Would you like to: ");
output(" (a) add a video tape to the collection");
output(" (1) list the tapEs already in the collection");
output(" (q) or quit thE program");
output("");

81'



Computer Fundamentals

ch = inputChar("Your choice (a/l/q): ");

if (ch == 0) II a null =har was returned

output("Please enter a command!");
ch = 'n';

else

II check if the value input was a valid command
if (ch!= 'a') && (ch != 'q') && (ch != '1')

output("Please enter a valid command (a, 1 or q) !");
ch = 'n';

}

while (ch

return ch;

'n' ) ; II repeat outer do loop until
II valid command is input

This method carries out the command passed as an argument (already checked for validity). It
uses an else if chain. More commands could be added but then it might be sensible to split the
command routines off into their own methods to improve readability and make the solution more
modular and therefore more robust.

1**
* Method to execute commands (more could be added)
* eg search, lend, delete.

*
*@param command char - the command to be carried out
*1

private void doCommand(char command)
{

II using an else if chain ...

if (command == 'a')
{

II see how many videos a=e in the collection:
if (numVideos >= MAX_VIDEOS)

output (IlSorry , no more videos can be stored");
}

else

videoTapes[ numVideos] getVideoDetails () ;
numVideos = numVideos + 1;

}

}

else if (command '1')

88



Computer Science

II loop through array
for(int x = 0; x < numVideos; x = x + 1)
{

output ("" + x + ": " + videoTapes[ x] . toString () ) ;
}

}

else if (command == 'q')

output("Bye then");

else

output ("Some internal error in doCommand() ");

Here we see a method that returns an object reference rather than a primitive. This requires us to
actually create an object within the method body (a new VideoTape object is instantiated).

1**
* Method to get details of tape

*
*@return VideoTape - a video t~pe object
*1

private VideoTape getVideoDetails()
{

String title = input("Enter the title of your video: ");
int length = inputlnt("Enter the length in minutes: ");
II We assume it is not yet lent
return new VideoTape (title, length, false);

}

1**
* IBIO methods, include here
*1

EXERCISE 2.12
Before we extend the above example to using data files you will find it useful to simplify
the doCommandO method to call helper methods for adding, listing and quitting. True
there isn't much to do with quit as yet but there could be in the future.

Further exercises might involve a method to delete a video tape from the array, two
techniques you can try are:

The shuffle -locate the record to be deleted, shuffle down records from there to the end of
the file. Don't forget to update numVideos! Take care with boundary conditions (like the
last record in the array).

The blank out -locate the record to be deleted and mark it in a special way (e.g. use "xxx"
for the title). Don't forget to check for an "xxx" location that can be used when adding
new tapes rather than adding to the end. Hlmdling numVideos and finding an insertion
point becomes a lot more tricky in this case.

89



Computer Fundamentals

Which method is more efficient in time taken? Which is more efficient in use of storage
space?

DATA FILES
The IE Subject Guide refers to Random Access and Sequential Files. Java (and therefore JETS)
has no tools for reading records from, or writing records to, a file. Rather it deals with character­
based streams or streams of bytes that might represent other data types. Either way, it is up to the
programmer to extract structure from a stream.

Random access files, based around byte streams, are needed by HL students and will be dealt
with later. SL students can simply use sequential file methods to write character-based streams
into and out of text files. Alternatively, the serializable interface (not part of JETS) can be used to
convert an array of record objects into a stream that can be written to a data file in one go. Even
though this is outside the scope of the syllabus it is so simple and powerful that it is an ideal
method for SL students who have no interest in more complex methods.

In fact, the different streams available in the java.io package are very complex and versatile and
whole books have been written on that subject alone. Here we simplify matters (we hope!).

CHARACTER-BASED FILESTREAMS
The advantage of these streams in a file handling application is that simple text files can be
created and then examined using simple editing tools like Notepad. Students can actually see
what gets into the file, very useful for debugging. Java stores characters internally using the 16 bit
UNICODE character set but the character stream classes can convert these to 8 bit codes such as
ASCII. Normally this process doesn't require any intervention by the programmer.

The character based streams are based on two superclasses:

• Reader

• Writer

Of interest to us, for simple applications are FileReader and FileWriter Classes which read and
write the character-based streams to and from data files.

When using data files, there has to be a link between the program and the local operating system
where the file is actually stored:

( ) ( )

This statement links the program to a file:

FileWriter theFileID = new FileWriter(FILENAME);

The FILENAME is a String which describes the location of a file on your system.

90



computer ~clence

In Windows you can use something like:

static final String FILENAME = "g:\\bluej\\videos.txt";

To define the location of the file. Notice that the delimiter for folders (directories) uses the double
backslash to 'escape' the escape character (as briefly mentioned in Strings, above).

To format the text as ASCII characters we use the PrintWriter Class which is similar to the output
methods we have been using in JETS. The PrintWriter Class can create an object in which the
output is directed to a FileWriter object:

PrintWriter outFile = new PrintWriter(theFileID);

After which items can be written to the file as follows:

outFile.println("A string item");

One problem with dealing with files and operating systems beyond the control of our program!
class is that things can go wrong. Maybe the file cannot be found or created. For example, if it is
a floppy disc, maybe there is no space or the disc has been removed.

To handle i/o errors of this type, Java uses the exception handling techniques discussed above.
The FileWriter constructor can throw an IOException if there are problems with the physical file
our code refers to.

To write a save command for the VideoStore we can use the following techniques:

try
{

II set up data file for writing
FileWriter theFileID = new FileWriter(FILENAME);
PrintWriter outFile = new PrintWriter(theFileID);

II loop through array, writing out records
for(int x = 0; x < numVideos; x = x + 1)
{

outFile.println(videoTape~ ~ .getTitle());
outFile.println(videoTape~~ .getLength());
outFile.println(videoTapes[ ~ .isLent());

}

outFile.close();
}

catch (IOException io)
{

output ("Error writing to the data file - "
+ io.getMessage());

If we look inside the file videos.txt after a sample run of the program:

Your choice (a/l/s/q): a
Please enter the title of your video: Hello Dolly
Please enter the length in minutes: 123

91



Computer Fundamentals

Would you like to:

(a) add a video tape to the collection
(1) list the tapes already in the collection
(s) save the tapes to a data file
(q) or quit the program

Your choice (a/l/s/q): a
Please enter the title of your video: Goodbye Charlie
Please enter the length in minutes: 211

Would you like to:

(a) add a video tape to the collection
(1) list the tapes already in the collection
(s) save the tapes to a data file
(q) or quit the program

Your choice (a/l/s/q): 1

0: Hello Dolly - 123 - false
1: Goodbye Charlie - 211 - false

Would you like to:

(a) add a video tape to the collection
(1) list the tapes already in the collection
(s) save the tapes to a data file
(q) or quit the program

Your choice (a/l/s/q): s

Would you like to:

(a) add a video tape to the collection
(1) list the tapes already in the collection
(s) save the tapes to a data file
(q) or quit the program

Your choice (a/l/s/q): q
Bye then

We find:

Hello Dolly
123
false
Goodbye Charlie
211
false

Now, the only problem is to get them back into the program on starting again. If there is a Writer

92



Computer Science

Class then there must be a Reader Class (yes) and a PrintReader Class (no).

To read character data from a file we can use the BufferedReader Class. This provides a
readLineO method which is analogous to the println(String) method of PrintWriter. I can't
explain the system of naming the java.io Classes!

The following method, called when the application starts up, checks to see if a data file exists and
reads in records from it:

private boolean checkForFile()
{

II See if a file already exists
try
{

FileReader theFileID = new FileReader(FILENAME);
BufferedReader inFile = new BufferedReader(theFileID);

String line;
int length;
boolean lent;
int x = 0;

II String read from file
II length converted to int
II lent converted to boolean
II counter for number of entries in file

II The title is in the first line
II readLine returns null if the eof is reached
while ( (line = inFile. readLine ()) ! = null
{

II get the next two fields and construct a new object
length = Integer.parselnt(inFile.readLine());
lent = Boolean.getBoolean(inFile.readLine());

videoTapes[ x] = new VideoTape (line, length, lent);
x = x + 1;

numVideos = x;
inFile.close();
return true;

}

catch( IOException io)
{

output("Error trying to open file" + io.getMessage());

return false;

We add the following to the start of the constructor, before calling the getCommand-doCommand
loop:

if (checkForFile())
{

output("Data file located and loaded with"
+ numVideos + " existing records\n");

93



Computer Fundamentals

else

output("No data file found\n");

When the program starts it reads in the two records we left in the data file:

Data file located and loaded with 2 existing records

Would you like to:

(a) add a video tape to the collection
(1) list the tapes already in the collection
(s) save the tapes to a data file
(q) or quit the program

Your choice (a/l/s/q): 1

0: Hello Dolly - 123 - false
1: Goodbye Charlie - 211 - false

The key methods of the Reader and Writer streams in JETS (which can be used in examinations)
are:

BufferedReader(FileReader)

method description

ready Tell whether this stream is ready to be read.

read Read a single character.

readLine Read a line of text.

close Close the stream.

http://java.sun.com/j2se/1.4.1/docs/api/java/io/BufJeredReader.htm

PrintWriter(FileWriter)

method description

print
Print a string (or other primitive or object as a
String) - polymorphic.

println
As above but terminate the line with a
newline character

close Close the stream.

These file streams can only be accessed sequentially - no constructs exist for moving directly to a
given line. This implies operations such as binary search or sorting are not possible with character

94



Computer Science

based files. In tum, this implies that SL students need very little experience of file handling in
dossiers or for algorithms in examination papers.

EXERCISE Z.13
Implement the save and load file commands for the VideoFileDatabase application. You
can either load on entry to the program (as illustrated above) or, for the adventurous, you
can try to add an open command which takes the name of a file to be opened (implies you
can specify a filename when you save).

If SL students can successfully complete all the exercises in this section, they are ready to
start thinking about dossier problems. HL students still need to complete the remainder of
Chapter 5.

HIGHER LEVEL FILE HANDLING
HL students need to be able to use the key methods of the RandomAccessFile Class. At the time
of writing these were not completely specified in JETS but the following will probably be needed
for the dossier, if not for examination questions.

RandomAccessFile(String, String)
The constructor takes a filename as the first argument and an
access mode as the second.

method description

Sets the file-pointer offset, measured from the

seek(long)
beginning of this file, at which the next read or
write occurs. N.B. this method takes a long
primitive as an argument, not an int.

long length () Returns the length of this file in bytes.

read () Reads a byte of data from this file.

readFully (byte[ ] )
Reads b.length bytes from this file into the byte
array, starting at the current file pointer.

int readlnt () Reads a signed 32-bit integer from this file.

double readDouble () Reads a double from this file.

Boolean readBoolean () Reads a boolean from this file.

write (byte) Writes the specified byte to this file.

writeBytes(String) Writes the string to the file as a sequence of bytes.

writelnt (int)
Writes an int to the file as four bytes, high byte
first.

95



Computer Fundamentals

method description

writeDouble(double) Converts the double argument to a long using the
doubleToLongBits method in class Double, and
then writes that long value to the file as an eight-
byte quantity, high byte first.

writeBoolean(boolean) Writes a boolean to the file as a one-byte value.

close () Close the stream.

http://java.sun.com/j2se/1.4.1/docs/api/java/io/RandomAccessFile. html

To illustrate these methods we adapt the VideoTape example to store records in a random access
file rather than an array. The first consideration is the lack of a record structure in Java - the
random access file is an unstructured stream of bytes. In order for us to know, easily, where
record components are stored in the file we need to use fixed length objects.

The file maintains a pointer, which can be manipulated via the seekO method. To calculate where
one item finishes and the next item starts we need to know the length of our items.

Suppose we fix a title for a video to be 25 characters long, the length is stored as an int (4 bytes)
and the lent field is Boolean (l byte).

The record unit looks like this:

field

length

title length lent

up to 25 bytes 4 bytes 1 byte

30 bytes

These records are stored in a data file:

record: 0 2~ 3 4

start point 0 30 60 90 120

seek to 0*30 1 * 30 2 * 30 3 * 30 4 * 30

Therefore, as long as the records are all the same length, any component in the file can be found
by multiplying its position number by the record length.

Unfortunately, the title is a String and it only occupies as many bytes as needed:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

h e 1 1 0 d 0 1 1 Y

g 0 0 d b Y e c h a r 1 i e

The first String takes 11 characters, the second 15. If we try to store these in a file we won't know
where the start and end of each record is.

96



Computer Science

A solution is to fix the maximum number of characters that can be used in a title and pad out the
end of the String with spaces:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

h e 1 1 0 <s> d 0 1 1 y <s> <s> <s> <s>

g 0 0 d b y e c h a r 1 i e

In Java, we can do this by using a StringBuffer object whose length can be fixed. One approach to
file handling is to extend our existing record structure VideoTape to handle reading from and
writing to file. The length of the components can also be set in this Class. One advantage of
extending the Class is that we do not have to re-write the existing methods:

import java.io.*;
1**

* A Class to keep details of VideoTapes, can read
* and write records from an open RandomAccessFile

*
* @author Richard
* @version 200903
*1

public class VideoTapeFile extends VideoTape
{

II instance variables - or data members
II These are determined by the structure of the VideoTape Class

static final int TITLE BYTES = 25;
static final int LENGTH BYTES = 4;
static final int LENT BYTES = 1;

II length of video title
II length int 4 bytes
II lent is boolean - 1 byte

II Calculate length of a record - used to seek to correct
position
II in the data file.
static final int RECORD BYTES TITLE BYTES

+ LENGTH BYTES
+ LENT_BYTES;

1**
* No argument Constructor, calls VideoTape constructor
* super = a call to the super class constructor
*1

public VideoTapeFile()
{

super();
super. title fixLength(title, TITLE_BYTES);

}

1**
* Constructor for objects of class VideoTape
*1

public VideoTapeFile(String title, int length, boolean lent)
{

super (title, length, lent);

97



Computer Fundamentals

super.title = fixLength(title, TITLE_BYTES);

This is the method that fixes the length of the title String by using a StringBuffer instance and the
setLengthO method of that Class.

* Method to fix length of title String

*
* @param title - the original String
* @param size - the fixed length size in bytes
* @return a String of exactly size bytes
*/
private String fixLength(String title, int size)
{

StringBuffer sb = new StringBuffer(title);
sb.setLength(size);
return sb.toString();

Writing the data file involves moving to the correct position, calculated elsewhere, before this
method is called and then writing out the data fields.

/**
* Method to add item to data file

*
* @param the file to add to - must be open for writing
* @param the object to be written into the file
* @param position to add the record in the file
* @throws IOException if unable to complete
*/

public static void writeRecord( RandomAccessFile theFile,
VideoTapeFile theVideo,
long posToAdd )
throws IOException

theFile.seek(posToAdd);
theFile.writeBytes(theVideo.getTitle());
theFile.writeInt(theVideo.getLength());
theFile.writeBoolean(theVideo.isLent());

Notice that the method throws an 10 Exception if there is any problem reading from the file.
Again, this is dealt with elsewhere. Reading from a file is a bit more involved since the String has
to be re-created from a byte array. Since the length was fixed on writing the record, the number of
bytes that need to be read is known.

/**
* Method to read item from data file

*
* @param the file to add to - must be open
* @param long the position to start reading in the file
* @return a VideoTapeFile object (null if not read)

98



Computer Science

* @throws IOException if unable to complete the read operation

*1
public static VideoTape File readRecord( RandomAccessFile

theFile,
long posToRead )
throws IOException

theFile.seek(posToRead);
II Read a String by filling a byte array then converting
byte[] theTitle = new byte[ TITLE_BYTES]
theFile.readFully(theTitle);
String title = new String(theTitle);
II Remaining fields can be read directly
int length = theFile.readInt();
boolean lent = theFile.readBoolean();
II construct and return a VideoTapeFile object
return new VideoTapeFile(title, length, lent);

This method is used by the main database class to calculate the point at which each component
starts and finishes.

1**
* Method to return record length

*
* @return length of a VideoTapeFile object in bytes
*1

public static int length()
{

return RECORD BYTES;

Having got a class which represents a fixed length record and which can write its own objects into
a data file simplifies the logic of the main program:

The main Class contains the file object and the number of videos in the collection as before:

import java.io.*;
1**
* A class to store Video Tape data in a random access data

file

*
* @author Richard
* @version 210903
*1

public class VideoStoreRandom
{

II The filename, number of videos in the file, the file itself
static final String FILENAME = "c:\\bluej\\videos_r.dat";
private int numVideos = 0;
private RandomAccessFile theFile;

99



Computer Fundamentals

public static void main(String[] args)
{

new VideoStoreRandom();

The constructor is also the same:

1**
* Constructor loops until command "quit" is used
*1

public VideoStoreRandom()
{

if (checkForFile())
{

output ("Data file located and loaded with" + numVideos
+ "existing records\n");

}

else

output("No data file found, starting new collection\n");
}

char command;
do
{

command = getCommand();
doCommand(command);

}

while (command != 'q');
}

1**
* Method to check for existing file

*
* @return boolean true if there is an existing file
*1

Check for attempts to open the file and calculate the number of components from the total length
of the file in bytes and the length of each record. The file llength is returned as a long primitive so
the result is cast to an int.

private boolean checkForFile()
{

II See if a file already exists
try
{

theFile = new RandomAccessFile(FILENAME, "rw");
numVideos = (int) theFile.length() I VideoTapeFile.length();
return .true;
}

catch( IOException io)
{

output("Error trying to open file" + io.getMessage());
}

100



Computer Science

return false;

The getCommand method is unchanged (except that we no longer have a save option - all
operations take place directly to file. So we have left it out of this listing along with doCommand
that just calls the following methods:

)

1**
* Method to add a video tape
*1

private void add()
{

try
{

VideoTapeFile theVideo = getVideoDetails();
long posToAdd = numvideos * VideoTapeFile.length();
VideoTapeFile.writeRecord(theFile, theVideo, posToAdd);
nurnVideos = nurnVideos + 1;

}

catch(IOException io)
{

output ("Error adding record" + io.getMessage());

The error thrown by VideoTapeFile.writeRecord is caught here and also in listing the records in
the file:

1**
* Method to list video tapes in the collection
*1

private void list()
{

try
{

II loop through datafile
for(int x = 0; x < nurnVideos; x = x + 1)
{

int posToRead = x * VideoTapeFile.length();
output("" + x + ": "
+ VideoTapeFile. readRecord (theFile,posToRead)

.toString());

}

catch(IOException io)
{

output("Error during read - " + io.getMessage());

quit also needs to deal with a possible ][0 Exception when closing the Random Access file -

101



Computer Fundamentals

although there is not much we can do if an error occurs at this stage of the program:

1**
* quit the program
*1

private void quit()
{

try
{

theFile.close();
}

catch(IOException io)
{

output("Some error closing data file - "
+io.getMessage()) ;

}

finally
{

output("Bye then");

The getVideoDetails method is also little changed, it returns a VideoTapeFile object rather than a
VideoTape object.

1**
* Method to get details of tape

*
*@return the video tape object
*1

private VideoTapeFile getVideoDetails()
{

String title = input("Enter the title of your
video: ");
int length = inputlnt("Enter the length in
minutes: ");
II We assume it is not yet lent
return new VideoTapeFile(title, length, false);

1**
* IBIO methods, (c) International Baccalaureate 2004
* include here...
*1

Notice that the file expands as new records are added at the end. You can delete records by
shuffling, Java 2 now has a method to truncate a RandomAccessFile so you can actually shorten
the file if you need to, but its use is beyond the scope of JETS.

102



TRACE ALGORITHMS IN JAVA

Computer Science

EXERCISE 2.14
The application presented here is a very bare bones dossier program - deliberately so - we
really don't want to see our code in a student dossier! As an exercise, students could add
methods to navigate through the file (probably better done with a GUI) , search the file,
edit and delete records.

Further enhancements could involve adding a key field to the record structure and
maintaining the file as a sequential random access file - this involves inserting records at
the correct position and deleting them by shuffling .

•••• It •••••••••

© IB0 2142004 ••

As an example, we will consider the usc~ful process of maintaining a full index to a data file (or
another array). For High Level students this topic is included in Chapter 8 but adventurous
Standard Level students might find it a useful dossier technique as well.

A Class has the following data members:

public class Booklndex
{

II instance variables - or data members
private String bookNum; II book reference number
private int pos; II book details location in main file

The Booklndex Class has appropriate accessor and mutator (set and get) methods. Another Class
declares an array of these objects:

Booklndex[] booklndexes = new Booklndex[ 500] ;

This structure is used in a library containing fiction and non-fiction books. There are several shelf
units in the library, each labelled with a letter from A to H. Each shelf unit has four shelves in it.

The BOOKNUM field has the following structure:

The first character indicates a fiction or non-fiction book;

The second character indicates the shelf unit letter (A to H);

The third indicates the number of the shelf (1 is at the bottom, 4 is at the top).

The last three numbers indicate a subject code.

An example of a book number is NG2023

The POS field indicates where the rest of the details of the book are located in a direct access data
file.

When a new book is added to the library an entry is made at the end of the data file. The book
number is then inserted in the correct position in the array.

103



Computer Fundamentals

Lets assume the array contains the following data:

element o 2 3 4 5 6 7

BOOKNUM

POS

FA1021 FAl122 FA1233 FA2099 FA2103 FA2145 FA2238 ...

3 6 2 5 0 4 1 ...

A new book, with reference number FA2139 is added to the end of the data file at a position
contained in an identifier newPos. This book now needs to be added to the array. Consider the
following algorithm:

private void insert (String bookNum, int newPos)
{

int i = newPos; II pointer to the array
II Shuffle up array entries from top end to entry position.
II This will find the next smallest to bookNum (or first
element)
while ( (i > 0)

& & (bookNum. compareTo (booklndex,"s[ i] . getBookNum ()) < 0) )

booklndexes[ i] = booklndexes[ i .. 1] ;
i = i - 1;

}

II Check boundary condition at i 0
if (i != 0)

i = i + 1; II insert above smaller entry
}

booklndexes[ i] new Booklndex (bookNum, newPos);

Assuming that the array is as shown and the next vacant location in the file is 7, trace the
algorithm given above.

newpos bookNum i book <compare condition>

Indexes[i]

7 FA2139 7 FA2238 TRUE

7 6 FA2145 TRUE

7 5 FA2103 FALSE

At this point the array looks like:

o 2 3 4 5 6 7

FAlO21 FAl122 FAl233 FA2099 FA2103 FA2103 FA2145 FA2238

4 7 3 6 I I 5 2

and the value of i is 4. Therefore we execute:

104



computer :Sclence

if (i != 0)
{

i = i + 1; II insert above smaller entry
}

booklndexes[ i] = new Booklndex(bookNum, newPos);

Thus bookNum FA2139 and the value 7 are inserted into the correct position (5) in the array.

EVALUATE ALGORITHMS IN JAVA©IB0:Z 1 52004 ••

Consider an array NAMES which looks like this:

4 53

names I XXXX §~_s_aY_ak_a---,_j_it_h_an__XX_X_X_ andrew

012

An algorithm is to be designed which will move entries which are not 'XXXX' to the front of the
array, like this:

names sayaka jithan andrew XXXX XXXX XXXX

o 2 3 4 5

The following algorithm attempts to do this:

1**
* The Shuffle Class

*
* @author Richard
* @version 021003
*1

public class Shuffle
{

static final String Ml\RKER = "XXXX";
static final int LAST P = 5;
String[] names = new String[] { Ml\RKER, Ml\RKER,

"jithan", MARKER,
"sayaka" ,

"andrew"

public static void main (String[] args)
{

new Shuffle();
}

1**
* Constructor
*1

public Shuffle()
{

shuffle();
showArray();

}

1**
* shuffles names not matching special marker to front

of array

105



Computer Fundamentals

*
*1

public void shuffle()
{

int i, j; II pointers to array names
i 0;
j = 0;

II loop until end of array is reached

while (j <= LAST_P)
{

II Advance pointers to first XXXX entry
if (! names[ i] . equals (MARKER) )

i i + 1;
j j + 1;

}

else
{

II advance pointer to first non-XXXX entry
while (names[ j] . equals (MARKER) )

j = j + 1;
}

II place valid entry in XXXX position
II replace entry with XXXX
names[ i] names[ j]
names[ j] MARKER;
}

II advance the pointers
i i + 1;
j = j + 1;

}

1**
* list the names array on the screen
*1

public void showArray()
{

for(int x = 0; x < LAST P; x = x + 1)

output (x +" "+ names[ x] ) ;

}

1**
* IBIO methods, (c) International Baccalaureate 2004
* (include here)
*1

106



computer ::SCIence

EXERCISE 2.16
a. Trace this algorithm to demonstrate that it works for the data set given above.
b. Trace this algorithm to demonstrate that it does not work for this data set:

names I XXXX XXXX phuong XXXX richard XXXX

2 3 4 5 6

c. Supply the required correction to the algorithm.
d. Outline test data needed to ensure that the revised algorithm works for all possible

(valid) data sets. One example would be an array with all XXXX entries ..--. -- -- .
The methods of the String Class that students are expected to know were defined earlier in this
chapter, the list is:

boolean
String
String
int
int
int
int
void
void

.equals(String)

.substring(int, int)

. substring (int)

. length ()

. indexOf (char)

.indexOf(char, int)

.compareTo(String)

. toUpperCase ()

.toLowerCase

All of the methods require an instance of the String Class to work with and return the indicated
data type (or are void).

COMMON PITFALLS IN USING STRING INSTANCES AND
METHODS
Java's (and therefore JETS's) use of String instances is somewhat different to PURE and to other
languages, such as C, C++ or Pascal. The String instance is NOT an array of characters but is an
'immutable' object - once instantiated (created) a String object cannot be changed. Therefore you
cannot do the things you might expect to be able to do. For example:

II unworkable code
String name = "Saddam Hussein";
String character = name[ 0] + name[ 11] + name[ 11] + name[ 13] ;

Instances of the StringBuffer Class can be used where an array of characters is required, see the
Tokenize example below.

You cannot test two Strings for equality using the == operator since the String is an object
instance, you merely test their references. Therefore you MUST use the equals method (below).

II unexpected
String name =

String object
boolean found

result
"Saddam" + " Hussein";

new String("Saddam Hussein");
= (name == object);

II expected result

107



Computer Fundamentals

String name = "Saddam Hussein";
String object = "Weapons of mass destruction";
boolean notFound = (name.equals(object));

When a String instance is modified in some way (added to, for example) the old String is thrown
away and a new one created with a new reference. The old String instance is eventually removed
from memory by 'garbage collection' - a topic covered further in Chapter 5.

CONCATENATION
This means joining two string together so that, for example:

String newString = "2" + "2";

Places the value "22" in newString. Notice that characters cannot simply be concatenated
to new String instances (char is a primitive type):

String newString = '2' + '2'; II compilation error

However, it is possible to add a character to a String instance:

String newString = "2" + '2'; II no compilation error

surname
initial

This is the same as implicitly converting other types to strings when using the concatenation
operator (+). An example might be to capture a person's first initial and surname and then store
them in a different form:

String initial;
String surname;
String name;

input("What is your last name?");
input("What is the first initial of your first

name?") ;
name = surname + ", " + initial;

SUBSTRINGS
A substring is part of a larger string as in:

String name = "Henry the Human Fly"
String middle = name.substring(lO, 15)

Will place the value 'Human' in the object into middle. - notice the space at the end. Substring
can also be used with one argument, in which case it returns the letter d from a specified position
up to the end of the String, thus:

String name = "Henry the Human Fly"
String middle = name.substring(lO)

Places "Human Fly" into middle.

108



Computer Science

EXAMPLE OF STRING MANIPULATION
Suppose we wished to 'tokenise' a string such as the one given above. To 'tokenise' means to
split it into its components - in this case we would split it at spaces. This can be a very useful
function in programs that analyse the syntax of human or computer languages.

Class data members/definitions:

a string and length of longest single

static final int MAX = 6;
static final int LONGEST TOKEN
static final char SPACE = , ';

II maximum tokens in
token
private
private
private

20;
II token separator

II StringBuffer and StringBuffer array to hold message and data
II Class could be adapted to tokenize String input by user
II to investigate limitations of this example by a suitable
II set of test data

II new array of StringBuffer references
private StringBuffer[] data = new StringBuffer[ MAX]
private StringBuffer meE:sage = new StringBuffer ("Henry the
Human Fly");

A tokenize method:

private void tokenize(StringBuffer message)
{

int pas =
int count
int len

0;
= 0;
message.length();

II position in the String
II element in data array
II length of initial String

II loop through message until end or no more space for tokens
while ( (pas < len) && (count < MAX) )
{

II Original array just a set of empty object references,
II so construct new instance for each array element
datal count] = new StringBuffer (LONGEST_TOKEN) ;

II find end of current token, marked by a space
while ( (pas < len) && (message.charAt(pos) !=(SPACE))
{

dat~ coun~ .appendlmessage.charAt(pos));
pas = pas + 1;

count = count + 1;
pas = pas + 1;

109



Computer Fundamentals

EXERCISE 2.17
a) What test data would you use to 'dry run' or trace the above algorithm?
b) Does it work for all items of test data?
c) What happens if the entered string has more than MAX words in it?
d) The algorithm does not cater for punctuation - commas or full stops (periods) will

be included as part of the word. Outline how it could be modified to take these into
account.

.............. I[ ••••

OTHER METHODS OF THE STRING CLASS
We have used various methods in previous chapters and the following example shows how the
remaining methods might be used in a small application. The user is expected to type in a series
of single character commands.

1**
* A class to do illustrate some methods of the String Class

*
* @author Richard
* @version 041003
*1

public class StringMethods
{

private String message
= "Default Text Message for Use with the Class";

private String commands = "SULHQ";
private char command = , ';

public static void main(String[] args)
{

new StringMethods();
}

1**
* Constructor
*1

This section of the program gets a message from the user (or uses the built-in message defined as
a class data member), then gets and executes commands in a command loop.

public StringMethods()
{

message = getMessage();
while (command != 'Q')
{

command = getCommand();
doCommand(command);

private String getMessage()
{

II User types a message, if not, default is used
String msg = input("Please type in a text message: ");

110



Computer Science

if (msg .length () 0)
{

msg = message;

return msg;

private char getCommand()
{

String cmd =

input("Please input a command
(H for help on commands): ");

if (cmd.length() == 0)
{

return '

else

, .,

return cmd.charAt(O);

Uses i ndexO f () function to see if command entered by user is in the String object commands

private void doCommand(char cmd)
{

II lowercase letter returns first position of that letter
II in the String, if any; matches both lower and uppercase
II letters in target String

if ( (cmd >= 'a') && (cmd <= 'z')
{

String testMessage = message.toLowerCase();
int pos = testMessage.indexOf(cmd);
output("That letter is found at position" + pos);

else

II check for valid command
if (commands.indexOf(cmd) < 0)

output ("Unknown command: " + cmd);
}

else

if (cmd == 'S')

output(message);
)

else if (cmd == 'U')
{

message = message.toUpperCase();

111



Computer Fundamentals

else if (cmd == 'L')

message = message.toLowerCase();
}

else if (cmd == 'H')
{

output("S - show the string");
output("U - convert string to Uppercase");
output("L - convert string to Lowercase");
output("H - show this list");
output("Q - end the program");

}

else if (cmd == 'Q')
{

output("bye then");

}

/**
* IBIO methods, (c) International Baccalaureate 2004
* (include here) .
*/

EXERCISE 2.18
a) Extend the command list to count the words in the sentence, perhaps by modifying

the tokenize method given earlier. You might prefer to investigate Java's
String SplitO method for this exercise.

b) Extend the command list to include creating a title case option (that is, converting
each individual word so that it starts with an uppercase letter).

c) The search for letter could be extended (or a new one introduced) that counts the
number of times the letter occurs in the String. One version of indexOf takes two
int arguments, the second being a start offset for the search.

d) An edit command, which replaces the existing message with a new message (if
valid) could easily be introduced via a call to getMessageO.

.......... aaaa.~aaaa

This type of command line interface is typical of some older editors used in Operating Systems
before the widespread use of GUI's. An interesting dossier project based around this structure
could be a line-based text editor. A number command brings up a specified line which can then be
transformed in some way. The lines could be stored in a String or StringBuffer array. For HL
candidates a similar Class could be used to edit batch command files, user registration data or
setup files for a larger system.

112



Computer Science

©IB02.1.6 CONSTRUCT ALGORITHMS IN JAVA
2004

The following array has scores entered into it. The end of valid entries is marked with the special
value -999. Where previous entries have been deleted the score has the special value -99.
Element 3 demonstrates this:

scores 23 19 J'--_-_9_9 9_9 4_3 -_99_9__

2 3 4 5 6

To find the position where a new value should be inserted into this array the following informal
algorithm is used:

Start at the first element

while an empty location is not found
OR the end of the array is not reached
move on to the next element

return the position of an empty location
OR of the end of data marker (-999).

Construct the Java method returning an int value representing the insertion position.

Start with a correct signature:

public int findInsertionPoint()
{

II finds the insertion point in an array scores
II acceptable insertion positions have values -99 and -999
II parameters were not specified so assume global variables

pas = 0; II set pointer to first element
II loop through and search
while ( (scores[ pas] != -99) && (scores[ pas] != -999) )

pos == pos + 1;

return pas;

EXERCISE 2.15
The above algorithm does not work if neither -99 nor -999 are encountered within the
array. Add the statements necessary to detect this and return a suitable int value (or throw
an exception if you prefer) .

••••••••••••••
Consider the following arrays:

scores 1__9_9 19_---L__5_6_----L__9_9 4_3 8_2__

o 2 3 4 5

113



Computer Fundamentals

names I phuong richard

o I

sayaka [:E~ arona

234

andrew

5

EXPLAIN THE NEED FOR SEARCHING AND SORTING

The following algorithm is designed to delete any name from the NAME array for which the
corresponding entry in the SCORE scores is less than a given mark by replacing the name with
the String "XXXX".

public void delete(int[] scores, int passMark, String[] names)
{

for(int x = 0; x < LAST P; x = x + 1)
{

if (scores[ x] < passMark)
{

names[ x] = DELETED;

}

The algorithm is called from the constructor as follows:

public PassMark()
{

delete ( scores, 50, names );
showArrays();

Explain why the names array is changed in the constructor PassMark.

Trace the algorithm to show the contents of the NAMES array after it has completed execution.

© IBo2.1.7
2004

Computer systems are constructed to solve data-processing problems (electricity billing, payroll
processing, air traffic control to name but three). In such systems, updating of databases is an
equally common operation. New items need to be added, old items deleted and existing items
need to have details changed. Therefore searching for an item is a very common process.

Searching for an item is nearly always made easier when data items are held in some specific
order and so methods of sorting data items have been extensively studied by programmers.

©IBo"'182004 l1li'•• APPLY SPECIFIED SEARCHING AND SORTING
ALGORITHMS

Students need to know linear and binary search algorithms and selection and bubble sort
algorithms in some detail. They can be asked to compare them for efficiency and applicability and
be able to say something about their space and time requirements as set out in the following two
sections.

Students could be expected to recall the named algorithms from scratch - any suitable variation
would be appropriate in this case.

Recursive versions of the binary search algorithm are not required in the common core.

114



Computer Science

Students may also be introduced, in the examination, to searches and sorts of similar complexity
to those specified in the syllabus (eg the insertion sort method or its several variants could be
described/developed but the quicksort would never be set).

SEQUENTIAL (LINEAR) SEARCH
This is as simple as the name suggests. In an array, or similar list of data items, each element is
examined in tum to see if it is the required item. The search ends when the item is found or the
end of the list is reached. The list need not be in any special order.

The following Class illustrates the linear search and the basic framework will be used for all
searching and sorting examples:

public class SearchesSorts
{

II basic data array
private static final int MAX = 998;
private static final int SIZE = 16;
private int[] data = new int[ SIZE] ;

1**
* Constructor
*1

public SearchesSorts()
{

fillData(data) ;
showData(data);
int wanted = inputInt("Please input the item to search
for: ");
linearSearch(data, wanted);

}

1**
* This method fills the array data with random ints

*
* @param the array to be filled
*1

void fillData(int datal]

II Puts random values from 1 to MAX into the array
for (int i = 0; i < SIZE; i = i + 1)
{

datal i] (int) (Math.random() * MAX) + 1;
}

}

1**·
* This method shows the array contents on the screen

*
* @param the array to be shown
*1

void showData(int datal])
{

StringBuffer line new StringBuffer(SIZE*S);
for (int i = 0; i < SIZE; i = i + 1)

115



Computer Fundamentals

line.append(dat~ ~ + " "I;
}

output (new String(line));
}

The actual linear search algorithm:

1**
* This method carries out a linear (sequential) search by
* examining each item in the array in turn

*
* @param the array to be searched
* @param the wanted item
*1

void linearSearch(int dat~], int wanted)
{

boolean found = false;
int pos 0;

II flag to indicate end of search
II current position in array

while ( (pos < SIZE) && ! found )
{

found = (data[ pos]
pos = pos + 1;

wanted) ;

}

if (found)
{

II NB: gives position in the list rather than array
element

II (which would be (pas-I))!

output ("Found the item at position: " + pos);
}

else

output("the item" + wanted + " was not found.");

BINARY SEARCH
This method of searching a list is often compared to looking through a dictionary or telephone
book. Suppose you are searching for the entry 'cat'. If you open the book near the middle you
may find items starting with 'k'. Few people will then look further on in the book but will open
the lower section somewhere near the middle, finding a letter such as 'f'. Again they open the
book further towards the start and encounter 'b'. This process is followed until the item is located
(or found not to be present). Formally expressed as an algorithm this might appear as follows:

while the list is bigger than 1 item and wanted item is not
found

calculate mid point of list
if value at mid is wanted value then

116



Computer Science

found it
else

if wanted is in lower half
move end point to one less than midpoint

else
move start point to one more than midpoint

endwhile

Follow the process on this list of numbers:

o 2 3 4 5 6 7 8 9 10 11 12 13 13 15

Say the wanted item is 43.

First, find the mid point of the list (15 2+ 0)

The value at 7 is 42; it is not the wanted item.

7 (using integer division)

It is less than the wanted item so make position 8 the new start point of the list to be searched:

8 9 10 11 12 13 13 IS

The new mid point is I, where 68 is greater than the wanted item, discard the top elements:

8

43

9

56

10

67

The new mid point is 9, discard 9 and 10 and the only value left is 43. It is found in 4 iterations,
the worst possible case in this particular list. If we had used linear search the worst possible case
would be 16 - the length of the list, so that is quite a time saving.

BINARY SEARCH ALGORITHM
We use the same framework as above, only using a new method, fillSorted () , to make sure
our random values are arranged in ascending order:

1**
* This method fills the array data with random ints

*
* @param the array to be filled
*1

void fillSorted(int data[] )

II Puts ordered
datal 0] = (int)
for (int i = 1;

random values into the array
(Math.random() * INTERVAL) + 1;
i < SIZE; i = i + 1)

117



Computer Fundamentals

datal i] datal i - 1] +(int) (Math.random() * INTERVAL) + 1;

One algorithm for binary search is:

1**
* This method carries out a binary search by examining the
* mid element in the list and then discarding half.

*
* @param the array to be searched
* @param the wanted item
*1

void binarySearch (int data[], int wanted)
{

false; II flag to indicate end of search
II first element of part to be searched

II last element of part to be searched

boolean found =
int start = 0;
int end = (SIZE - 1);

II loop
while (
{

until found or no more elements to search
(end >= start) && !found )

II find mid point of current list
int mid = (start + end) I 2;
found = (data[mid] == wanted);
if (found)
{

output ("Found the item at element: " + mid);
}

else

II discard half of the array and try again
if (data[ mid] < wanted)

start = mid + 1;
}

else

end mid - 1;

}

if (! found)
{

output("the item" + wanted + " was not found.");

For HL students this search can also be handled recursively (see Chapter 5).

118



Computer Science

SORTING
One disadvantage of binary search is that the list of values to be searched must be in order
whereas linear search will work with un-ordered lists. There are very many different algorithms
for sorting but the common core only requires you to be able to recall the simpler methods - the
bubble and selection sorts.

BUBBLE SORT
This sort starts with the first pair of numbers (0,1) which are compared and swapped if necessary.
The next pair (I, 2) are compared until the last pair have been compared. Since the highest value
in the list has now 'bubbled' to the top, the whole process is repeated with the first n-l elements
of the list. This continues until all items are in place.

First pass

o 2 3 4 5 6 7 comment

compare 45 & 32

32

32

32

45

2

2

2

45

25

25

25

45

34 12 63 swap them, 45 > 32,
compare 45 & 2

34 12 63 compare 45 and 25 and
swap them

34 12 63 compare 45 and 87, no
swap 45 < 87

compare 87 and 34...

32 2 25 45 34 12 63
Highest value now at top.
Sort 1 to 7 next

A variation is to check if any swaps were necessary on a complete pass of the unsorted portion of
the list, if no swaps were needed, the list must have been sorted and the sort can terminate
immediately.

This is a very compact bubble sort algorithm:

/**

119



Computer Fundamentals

* This method sorts the array data

*
* @param the array to be filled

*1
private void bubbleSort(int[] data)
{

output("sorting ... ");

II top is the boundary between the sorted and unsorted
portion
for (int top = (SIZE - 1); top> 0; top = top - 1)
{

for (int upper = 1; upper <= top; upper = upper + 1)
{

II upper and lower are the neighbours being compared
int lower = upper - 1;
if (data[ upper] < datal lower] )
{

Iiswap
int temp = datal upper] ;
datal upper] datal lower]
datal lower] = temp;

EXERCISE Z.19
a) Re-write the algorithm to use two nested while loops.
b) Add a terminating condition to the inner loop to test if any swaps were needed. It

might look a little bit like this:

while (TOP> 1) and SWAPPED do
SWAPPED <- false II flag to check if swap took place
II start at first 2 values in unsorted part
while UPPER <= TOP II check if at top of array yet

if DATN UPPER] < DATN LOWER] then
II swap the values
II set the swapped flag

endif
II move up the array and compare
II the next pair of values
enddo

enddo
•••••••• • J[ ••••

SELECTION SORT
The term selection sort has been used by different authors to describe different sorting methods.
However, in the old IB teacher support material a version with the following informal algorithm
is given:

120



Computer Science

'Sort in descending order by finding the largest element in the array and then swapping it into
position I, then finding the next largest and swapping it into position 2 and so on.'

There does not seem to be any reason for this to change in the new subject guide and support
material. Of course the array can equally well be sorted into ascending order as described below.

• The list is split into two parts, the sorted part and the unsorted part (initially all of the
elements).

• Each element of the unsorted part is examined in tum to locate the smallest and this is
swapped (exchanged) with the first element of the unsorted string.

• The boundary of the sorted string is then incremented.

• The process continues until all elements have been placed in the correct position.

45 32 2 25 87 34 12 63
scan to find 2 is the smallest,
then swap 45 & 2

32 45 25 87 34 12 63
scan unsorted to find next
smallest, 12,

then swap 32 & 12

swap 45 & 25

and so on ...

This sort is sometimes known as the Exchange or Interchange sort. An algorithm for this sort is
given below:

/**
* This method sorts the array data

*
* @param the array to be sorted
*/

private void selectionSort(int[] data)
{

121



Computer Fundamentals

output("selection sorting ... ");
II pos is the boundary between sorted and unsorted parts
II of the array
for (int pos = 0; pos < SIZE; pos = pos + 1)
{

II find the position of the smallest value in the unsorted
part

II then swap it with the value at the current position
int smallPos = minValueAt(data, pos, SIZE - 1);
int temp = datal smallPos] ;
datal smallPos] = datal pos]
datal pos] = temp;

For clarity a 'helper method' has been used to locate the position of the smallest value in the
unsorted part of the array:

1**
* This method finds the position of the smallest value
* in the array data between start and end

*
* @param the array to be examined
* @param the start element
* @param the end element

*1
private int minValueAt(inti] data, int start, int end)

{

int minSoFar = dat~ star~ II mimimum value found so far
int minPos = start; II position of minSoFar in array

for(int pos = start + 1; pos <= end; pos = pos + 1)
{

if (data[ pos] < minSoFar)
{

II found a new mimimum
minSoFar datal pos]
minPos = pos;

return minPos;

©IB0:Z 1 9
2004 •• COMPARE THE EFFICIENCY OF SEARCHING AND

SORTING ALGORITHMS
The efficiency of algorithms is discussed in terms of their execution time and their space
requirements. Some comparisons using the searching and sorting algorithms already presented
are given in the following section.

122



Computer Science

© IBO 2.1.10 DISCUSS THE EFFICIENCY OF SEARCHING AND
2004 SORTING ALGORITHMS

The efficiency of a linear or sequential search algorithm depends on the number of items in the
array, in the worst case the entire array has to be searched. Therefore there is a linear relationship
between the array size and the search time.

For binary search, the array is halved in size at each search step, doubling the size of the array
leads to a single step increase in search time. We can summarize this information as follows:

Array Size Linear search steps Binary search steps

2 2 1

4 4 2

8 8 3

16 16 4

32 32 5

64 64 6

128 128 7

Each binary search step takes a bit longer than each linear search step because the algorithm is
more complex. If we allocate (completely arbitrarily) a time of 100 mSec to each linear search
step for a particular machine and 500 mSec to each binary search step we can construct a graph of
array size against time for a hypothetical (and very slow!) computer:

Array Size Linear search time Binary search time

2 200 500

4 400 1000

8 800 1500

16 1600 2000

32 3200 2500

64 6400 3000

128 12800 3500

Using a spreadsheet to plot this result shows that the binary search has an inherent advantage over
the linear search, especially as N gets large. The linear search is faster for small values of N.

For HL students, algorithm efficiency can be described using big 0 notation (Chapter 5) but SL
students need only a general awareness of the differences in efficiency of these two algorithms.

123



Binary search

Computer Fundamentals

Figure: 1.1 Comparisou of Linear and Binary search

14000

~ 12000
u
(])

S 10000
'--'S 8000

~ 6000

~ 4000
(])

r./) 2000

o I':::::---.,----"'T""----,----!jr-----rj---"""Tj-----,j-

o 20 40 60 80 100 120 140
Number of items in array

In general, with n items in the list, n is the worst-case number of iterations for linear search
whereas for binary search it is logz n.

To summarize the characteristics of these two search methods:

Linear Search Binary Search

Is relatively inefficient since, in the In the worst case only Logz n items
worst case, all items must be searched. must be examined.

Works equally well with sorted or
Only works with a sorted list.

unsorted lists.

If the list is small, it may be faster than May not be suitable for small lists
binary search because the algorithm is since the algorithm is more complex
a simple one. than that for linear search.

The efficiency of sorting algorithms may depend upon how the original list is ordered. Usually
the worst case is a reversely ordered list. In both the bubble and selection algorithms there are two
nested loops. One runs from 0 to N-l and the inner loop from the current position to N-l .A gross
simplification might represent this process as:

for X = 0 to N-l do
for Y = X to N-l do

some steps
endfor
some other steps

endfor

II for the whole array
II sort next unsorted item
II using sort specific method

II depends on sort method

In the worst case, the loop within a loop structure will cause the sort to take a time that is

proportional to NZ•

The best case would be when the list is already sorted. In this case the inner loop (some steps)
would still execute unless there is some condition which will stop it. In the case of the bubble
sort, the swap flag can cause this loop to terminate early and increase the efficiency of execution
so that only one pass is made through the list. This would make the efficiency of a bubble sort

proportional to N instead of N Z for this particular case. This short circuit mechanism does not
work for the selection sort.

124



Computer Science

EXERCISE 2.20
Consider a two-dimensional array (matrix) of dimensions c and r. The matrix must be
searched for a given value and is sorted within each row, but not necessarily by row. Each
value in a matrix cell is unique.

A picture makes things clearer (as you should remember when discussing data structures
in your dossier):

o 1 2 c

o

2

r

1 7 11 .. 23

4 5 9 .. 77

3 6 15 .. 46

.. .. .. ..

17 45 65 79

a) Compare two different strategies you could use to implement this search algorithm.

b) As a class activity, or for the first to finish 0), compare and, if possible, classify all
the different strategies that have been tried by different members of the class.
Discuss the efficiency in terms of rand c.

c) Do the relative dimensions of rand c have any effect on the efficiency of your
chosen solutions? Hint: consider extreme cases like 100 X 2 and 2 X 100 matrices.

d) For the adventurous; design and implement an algorithm that will sort this matrix
into order by row and column.

......................
FURTHER EXAMPLE ALGORITHMS AND ACTIVITIES
An informal description of the insertion sort is:

• The list is split into two parts, the sorted part (initially the first element) and the unsorted
part.

• Each element of the unsorted part is examined in turn and placed in the correct position in the
sorted string, which then increases by one.

• Any elements greater than the inserted element have to be shuffled up one place in the sorted
string.

• The process continues until all elements have been examined.

125



Computer Fundamentals

Many people use a similar technique to arrange playing cards in their hands. Here is the process
with some example data:

32 2 25 87 34 12 63 1 sorted, take first of
unsorted, 32

2 25 87 34 12 63 shuffle 45 to make space,
insert 32

25 87 34 12 63 shuffle 32,45 to make
space for 2

87 34 12 63 25 gets inserted in its place

(2 doesn't have to move)

6~ 87 is already OK

12 63 shuffle 87, 45 to make
space for 32

Here is an algorithm for the insertion sort:

1**
* This method sorts the array data

*
* @param the array to be sorted
*1

private void insertionSort(int[] data)
{

output("insertion sorting ... ");
int cp = 0; II current position - value in unsorted list

II being examined
int pt; II pointer to number in sorted part

II being compared with cp
int tm; I I temporary store for number to be inserted

126



Computer Science

while (cp != (SIZE - 1)) I Iwhile not at end of array
{

II set up pointers
cp cp + 1; II increment current position to first in

unsorted
pt cp; II pointer into sorted part - starts at top
tm datal cp] ; I I temp store for element to insert

II while not at start, and next value is still too big,
II shuffle up current element in sorted part by 1
while ( (pt > 0) && (data[ pt-1] > tm) )
{

datal pt] = datal pt - 1] ;
pt = pt - 1;

}

II insert the temp value into the sorted part
da tal pt] = tm;

Copy and complete the following trace table:

DATA

cp pt tm
cp! =

pt>O
data[pt-l]

0 I 2 3 4 5
SIZE-l >tm

0 TRUE 23 7 34 36 13 9

I 1 7 TRUE

Compare the efficiency of the insertion sort using these two data sets:

set I

0 2 3 4 5

2 7 14 6 18 19

set 2

0

23 17 1=14 9 13 8

127



Computer Fundamentals

CLASS ACTIVITY
Search the Internet for sites which have interactive: sorting demonstrations.

ZZZZZ •••• ll ••••

EXERCISE 2.21
A two dimensional array of objects is used to hold birthday information on friends and
relatives. The Class BirthdayData has the following structure:

1**
* A Class to keep details of birthday data
* @author Arnold J Rimmer
* @version 25123000000
*1

public class BirthdayData
{

private String name;
private char sex;
private boolean getsPresent;

1**
* No argument Constructor
*1

public BirthdayData()
{

II initialise instance variables
name = null;
sex = ' , ;

getsPresent false;
}

1**
* Constructor
*1

public BirthdayData(String name, char sex, boolean
gets Present)
{

setName(name) ;
setSex(sex);
setGetsPresent(getsPresent);

1* you may assume the usual accessor and mutator methods
are present, along with IBID methods *1

128



Computer Science

In another Class, an array of these objects is declared:

BirthdayData[] birthdays = new BirthdayData[ 12] [ 31]

o

2

o 2 3 4 5 6 7 8 9 10 11

29 X

30

The entry marked with an X represents May 30th and the data in the object instance might be:

x. getName ()
x. getSex ()
X.getGetsPresent()

returns "30th Avril Ie Jeune"
returns 'F'
returns true

a) State the number of elements contained in this array.

b) State the initial values in each array element.

c) Outline one possible problem with this data structure.

d) If each name is allocated 25 bytes, character and Boolean types each occupy 1 byte
calculate the total memory needed to store the array data.

e) How many array elements will never contain any data (hint: assume a year has a
maximum of 366 days).

f) In most cases only a few of the total available cells will contain any data. Outline a
more efficient way to store this information.

g) Construct the algorithm which accepts a day and month number and returns a
string containing the persons name, sex and whether they should receive a present,
e.g.:

• The call getDetails(30, 5) returns the string "Avril Ie Jeune, female, yes"

The call getDetails(13, 4) returns the string "No birthday data"

(Remember that array element numbers do not correspond exactly to day and month numbers!)

129



Computer Fundamentals

© IBO 2.1.11 PROGRAMMING ERRORS
2004

Errors can occur with hardware and software as well as the data entry errors described in
Chapter 3. Computers are sensitive to electrical and mechanical fields which can cause hardware
to stop working properly and also alter the contents of magnetic media. Software errors are
usually put into one of three categories:

Logic errors: The coding of the program has been incorrect in sequencing or choice of
conditions, such as:

II algorithm to add up 9 numbers
II example of logic error - contains 2 logical errors

int count = 0;
int numbers = 9;
int sum;

while (count <= numbers)

sum = 0;
int number = inputlnt("Next number: ");
sum sum + number;
count = count + 1;

}

output("The sum is: " + sum);

Runtime errors: There are many things that can go wrong as a program runs, some examples
are:

• division by zero

• truncation, underflow and overflow errors

• file not found

• printer not ready

• illegal memory access, etc.

When using double numbers as we described above in section 2.1.1, there is an area where very
small numbers cannot be represented if they are too close to zero. The exact way in this works is
of interest only to HL students. However, if a number close to the lower bound is divided by a
number greater than 1, then a condition known as underflow can occur. Similarly, if the result of a
calculation exceeds the largest number that can be stored, overflow can occur. These events will
also generate runtime errors in many computer languages.

Syntax errors: These are errors in the syntax of the program language - such as mis-spelling a
keyword. These are caught at the compilation stage or while a program is being interpreted.

integer sum;

while (true)
sum = sum + 5

Would generate two syntax errors.

The process of testing a program involves both functional testing and testing with different types
of input data and is discussed in chapter 1.

130



•Chapter contents

3.1 Language Translators
3.2 Computer architecture
3.3 Computer Systems
3.4 Networked Computer Systems
3.5 Data representation
3.6 Errors
3.7 Utility Software

------------

131

Computer SCIence



Computer Fundamentals

INTRODUCTION
This chapter covers the hardware and software related to computer systems and how they interact.
It directly covers the theory specified in topic 3 of the common core of the IB computer science
syllabus. There are a number of exercises and activities included at appropriate places within the
text. Many of the exercises include questions that are of the type used in the exam and therefore
use the keywords related to the objectives. It is important that students ensure that they are aware
of the significance of the objective number that appears bt~side each assessment statement (AS) in
the syllabus. For example, objective I means that students will be asked to define, draw or state
something specific about the assessment item. Students are referred to the syllabus outline for the
full list of objective definitions.

This chapter forms the basis of the theory of the standard level course and higher level course.
Students will have varying levels of background and some may require further knowledge. For
instance, a student may require additional background in understanding I/O devices than is
provided in this text. Whilst there are many texts that students can refer to for additional detail or
background the Internet provides a range of freely available sites that enable students to get
access to definitions and further technical material that is relevant to the course and in some cases
their extended essay.

Some of these are listed below.

Useful resource sites

• http://webopedia.internet.com (very easy to use and has good links)

• http://www.ipl.org/ref/RR/static/comOO.OO.OO.html (complex but fun!)

• http://www.howstuffworks.com (follow the computers link)

• http://www.whatis.com (simple and easy to use)

• http://www.compinfo-center.com/tpdict-t.htm (complex but informative)

~6~23.1 LANGUAGE TRANSLATORS
~6~23.1.1 DEFINE SYNTAX AND SEMANTICS

The term syntax refers to the rules that govern how statements in a computer programming
language must be constructed. Common syntax errors include:

• incorrectly spelling a keyword

eg clas for class or inp for int

• using the wrong brackets

eg System.out.printl~"this is the wrong bracket"]

• leaving off the matching bracket

eg if( (x==y) && (p == q)

• leaving off the end statement symbol, which in Java is the semi-colon

132



Computer Science

The term semantics refers to the meaning conveyed by a collection of statements.

It is possible to write a syntactically correct statement that conforms to the rules of grammar but
which does not make sense in the context in which the statement is used. In other words the
meaning covered by the statement is incorrect or it has no meaning. For example, using an input
statement when an output statement is required.

A computer can detect syntax errors e.g. a software compiler can check for syntax errors and a
spell checker in a word processing package can check for spelling errors and simple mistakes in
grammar. However, computers cannot yet determine the purpose of computer programs or the
semantic meaning of the contents of a word processed document.

©lB031 :2
2004 •• DESCRIBE THE FUNCTION OF HIGH-LEVEL

LANGUAGE TRANSLATORS
What are high level languages?

The hardware cannot do a lot without the software, the programs and data that it operates on.
There are two main types of computer language for writing computer programs:

• Low-level language

High-level language

The hardware runs only in native machine code, usually represented by the l's and D's of binary
code. The electrical circuits and magnetic storage devices that make up the computer can only
recognise these two states. Inside the hardware's random access memory a computer program is
represented in binary form as machine code instructions and if we were able to look inside the
memory the instructions would look like this:

0001010011100110
00010011 0000 1111
10100011101011 0 0
1001010000111011

This is tedious for humans to work with and they tend to make lots of mistakes when trying to do
so. The first step for computer engineers was to make codes which could stand for binary
instructions. Thus ADD might correspond to the code for adding two numbers together, LDA
might correspond to the for code fetching a number from memory (LoaDing the Accumulator).
Thus a low level language might express the above as:

LDA 2309
ADD 2310
MLT #002
STO 2325

This language is also known as Assembly Language. Each line of an assembler program
corresponds to a single line of machine code, thus there is a one-to-one correspondence between
assembler code instructions and their equivalent machine code instructions.

Of course, this is still not very easy to handle so the next step was the development of High Level
Languages (HLL's). One HLL statement usually translates into many machine code statements.

133



Computer Fundamentals

An example of a HLL is Java and the following code segment shows a program to display the 2
times table up to 12.

int t = 2;
int j;
for (j = 1; j < 13; j++)

System.out.print1n("" + j + " x " t " j * t);

Which, believe it or not, is easier to understand when you are trying to develop computer software
(programs) rather than developing the software in either assembler or machine code.

Some features of HLL's are:

• They are portable, i.e. they can be run on different machines rather than being machine­
specific like assembly language.

• They are English-like and more easy to understand.

Different languages have been developed for different tasks.

EXAMPLES OF HIGH LEVEL LANGUAGES
There are said to be 2000 different high level computer languages, so these are just a few
examples from the mainstream:

Early HLL's were FORTRAN (FORmula TRANslation language) which was intended for
mathematical and scientific programming and COBOL (COmmon Business-Oriented Language)
for developing business and data-processing applications.

ALGOL (ALGOrithmic Language) was an early (1950's) attempt to introduce the concept of
structured programming and eventually led to the development of C and so on to Pascal which are
highly-structured block languages. The structure is (supposed to be) used by programmers to
make the workings of the program clear to other programmers who may have to work in the same
team or perform software maintenance.

BASIC (Beginners All-purpose Symbolic Instruction Code) was introduced for microcomputers
and, although poorly structured and often misused, gave many, many people an easy introduction
to computer programming.

Some other notable languages are: FORTH, LISP, Scheme, Haskell and Prolog. Some of these
languages are not based around procedural statements like those we are familiar with, but logical
assertions or functional elements. All of these languages are available (or have been at some time)
in versions for microcomputers and there are many free resources, if you wish to experiment.

More recently Object Orientated Languages, notably SMALLTALK, C++ and Java have taken
the concepts of structured programming one stage further. Only Higher Level students need to
know the concepts associated with Object Oriented programming and these are covered in
Chapter 5.

134



Computer Science

COMPARISON OF HIGH LEVEL LANGUAGES AND LOW
LEVEL LANGUAGES
The table below provides a brief comparison between high and low level languages. It should be
noted that program developed in a HLL are converted to LLL equivalents prior to execution. We
consider this process in the next section.

High Level Low Level

1
One instruction = many machine code One instruction = one machine code
instructions. instruction.

2 Portable, task-oriented Machine specific, machine-oriented

3 More English-like Less easy to write and debug.

WHAT IS A COMPILER?
A compiler is a translation program that converts source code into an equivalent object code
format. This is the process of converting a program written in a HLL to an equivalent LLL format
so that it can be executed. Compiled object code can then be executed or run by the computer.
The source code is created by the programmer using either a simple text editor or an IDE
(Integrated Development Environment).

The process of compilation is a stepwise process.

1. The first step is termed lexical analysis. In this step the compiler removes all the spaces
and comments and looks for reserved words used by the language such as for, while etc.
which may be replaced by single-character 'tokens'. The compiler produces a new
version of the code that is then passed to the next step.

2. The second step is termed syntax analysis. In this step the program is checked against the
syntax rules of the language e.g. that brackets match, do is matched with a corresponding
while statement etc. Syntax errors found at this stage are reported to the programmer.

3. The third step is termed code generation. In this step the actual code that will be run by
the computer is created. Normally this is machine code. Variables are given memory
locations and are added to a symbol table. Any standard library functions such as
mathematical functions or special functions to perform the input and output are linked into
the final compiled program.

The above steps are represented in figure 3.1 below:

135



Computer Fundamentals

Figure: 3.1

Programmer

compile

errors?

2. syntax analysis ]

yes

creates source code and saves

source code ]

errors fixed by
programmer

no

3. generate code J~ link required modules I

4. OBJECT code I
version of progra~

In summary, the function of the compiler is to check for s.yntax errors and report any that are
found back to the programmer to correct. The programmer then corrects the source code and
repeats the compilation stage. If the source code is found to be syntactically correct, the complier
links in externally required modules and generates the required object code, which can then be
loaded and executed. Otherwise the programmer must again attempt to correct the syntax errors
and then attempt compilation.

Compilers produce source code that makes up a separate program. For example, program.cpp
could be the name of a C++ source code and program.exe could be the name given to the
compiled object code that can be run directly.

To compile a program, the compiler needs to be loaded into memory and it can take some time to
compile long programs. Compiled code usually executes faster than an equivalent interpreted
version of the same program. Compiled code can often be moved across a range of compatible
architectures without the need to re-compile. However, source code produced on one type of
computer may not run on another computer, especially if it has to operate with a different or
incompatible operating system. In this case changes may need to be made to the source code
before re-compilation is undertaken, often with a different version of the compiler.

136



Computer Science

We will consider the process of using a translator called an interpreter in the next section.
However, it is important to note at this point that a compiler differs from an interpreter in a
number of ways. An interpreter analyzes and executes each line of source code in succession
without firstly looking at the entire program. A compiler creates a completely new program that is
executed. A compiler does not stop at the first error and continues the process by reporting the
syntax errors found. It is not necessary to have the compiler loaded into memory to execute a
compiled program.

WHAT 15 AN INTERPRETER
An interpreter translates high-level instructions into a format that can be directly executed one
line at a time. This is in contrast to a compiler which creates a completely separate program.
Compiled programs generally run faster than interpreted programs. The key advantage of an
interpreter is that the line of code being interpreted is executed straight away. This can be an
advantage when developing large computer programs.

Unlike compiled programs the interpreter needs to be loaded each time the program runs and thus
takes up memory space.

mscorlib,
Yen;ion=1.0.3300,O,

Cu!ture=neutral,
PublicKeyToken=b77
a5c561934e089j
Sy~tem

i-oolIl-------1 Drawing.Point.
System.Drawing.
Version=I,0.3300.0,
Culture=neutnl.l,

compile

save program
SOURCE file

Figure: 3.2
creates source code and saves

report and fix errors?

no

repeat until each line
is finished

Software development requires that the programmer has access to an editor to create the source
code. It is also likely that the programmer has access to a debugging tool or debugger, which
allows the programmer to perform a range of debugging functions in order to trace and remove
bugs from the source code. Often the programmer has access to a software development
environment that integrates the editor and the debugger into what is know as an integrated
development environment (IDE).

A final point. Code generators are often associated with IDEs. For example, in GUI environments
a design tool is likely to be available that allows the programmer to construct the GUI interface
instead of writing the code directly to do this. At the end of the GUI development the code
required to create the screen is generated by the IDE and the programmer can then view this code
as source code.

137



Computer Fundamentals

In summary, the role of the translation process is to convelt source code into object code that can
be executed. Compiled code or object code is a completely separate program which can stand
alone and execute without the compiler. Such object code can't be modified, whereas source code
that runs via an interpreter can normally be viewed.

COMPILING AND RUNNING A JAVA PROGRAM
The case of Java is somewhat different as it was originally designed as a cross-platform language.
Because of this, a separate compiler and library of modules would be needed everywhere Java
source code is to be turned into machine language.

The designers of Java decided to have Java 'compiled' not to anyone native machine code for any
particular hardware system but rather to compile to an intermediate stage (known as Java
bytecodes). This stage is what is found in a java .class file produced by running the javac program
on a Java source code file.

The bytecodes are a tokenised and otherwise compressed version of the original code which are
then passed to an interpreter (the Java Virtual Machine) which has to be written for each platform
Java is to run on. It is the JVM which actually produces the machine code from the byteeode file
and from any pre-compiled library units needed by the local operating system.

Figure: 3.3

Java source file
javac compiler

text file with a .java extension

[

Java bytecode file

file with a .class extension
(.class files)

Java library files

fOdOCffiP~/

java interpreter I
(Java VirtualMaChint~

local machine code I

138



Computer Science

EXERCISE 3.1
1. Clearly define the terms 'syntax' and 'semantics'.

2. Compare High Level languages with Low Level languages.

3. Outline, giving examples, why there are many different types of High Level language.

4. Outline the differences between source code and object code.

5. If you were a program developer or software supplier, what advantage is there in
distributing your software as object code instead of source code?

6. Describe the operation of a compiler.

7. Outline how an interpreter functions.

8. What is the role of a debugger?

9. Using your chosen program development environment, locate the text editor and
debugging tools; is it an IDE? Does it provide any code generation features?

~l~.? 3.1.3 SOFTWARE DEVELOPMENT TOOLS
There are a range of software development tools that make the development of certain software
easier. Some of these are briefly listed below.

HTML editor

A software tool that enables web pages to be created is termed an HTML editor. It enables HTML
code to be created by using icons or menu options to generate the program. A good example is the
basic editor included in the Netscape browser. By using such a tool, the developer does not need
to know or remember the syntax of a range of HTML instructions and can concentrate on what
they wish the HTML to do. Use of such tools should mean faster development.

DBMS

Date Base Management Systems (DBMS) enable databases to be created without the need to
write the specific computer code. DBMS have a range of software modules that enable data
dictionaries and files to be created, they provide a structured query language to enable the data to
be queried, facilities to update the data and manage the data and a reporting facility to produce
desired printed reports.

CASE Tools

Computer Aided Software Engineering (CASE tools). CASE tools are a category of software
tools that provide a development environment for programming teams. They enable the stages of
the systems development cycle to be implemented and managed in an integrated manner. CASE
systems offer tools to automate, manage and simplify the development process. These can include
tools for:

• Summarizing initial requirements.

• Developing flow diagrams.

• Scheduling development tasks.

• Preparing documentation.

• Controlling software versions.

• Developing program code.

139



Computer Fundamentals

Macros
When you use a product such as word processor you often need to be able to group a set of
instructions into a single operation. Most of the standard office products provide a way to do this
by enabling the creation of what are termed 'macros'. Macros are normally developed by
recording a series of keystrokes which can be referenced later, so they can be played back. The
referencing maybe provided by using some form of special icon or set of keystrokes, often termed
a 'shortcut key'. The advantage of macros is that they save time and effort by automating tedious
and repetitive processes. They can also be shared between users.

EXERCISE 3.2

1. Define the term macro and outline a situation in which a macro could be used in a general
purpose applications package.

2. An insurance company needs to keep track of personal and pay records as well as details
of clients and their insurance contracts. Explain why a DBMS (Database Management
System) is used in preference to several stand alone applications.

3. A group of musicians want to make their music available on the internet. Explain why
they would use HTML and outline two reasons why the site would have different types of
file (e.g. music and graphics) .

••••••••••••••
~6~~3.2 COMPUTER ARCHITECTURE

The term computer architecture refers to the logical layout and relationships between the different
computers of a computer system. A computer system is fundamentally an Input -> process ->
output system. Thus, the fundamental architecture of a computer system shows the relationship
between the input components, the processing components and the output components of the
system. The simple block diagram shown in figure 3.4 outlines the relationship between the
components of a computer.

Figure: 3.4

7

/ /

7

Output .

140



Thus, a PC can be viewed in this way:

Keyboard

Computer Science

~(~~,? 3.2.1 THE CPU
The Central Processing Unit (CPU) is the engine of the computer. It is also known as the chip or
processor. The CPU contains a control unit (CU) and an arithmetic logic unit (ALU) and two
communication bus systems called the 'primary memory bus' and the 'address bus'.

The control unit controls the sequence of the execution of the program that is stored in the
computer's memory.

The arithmetic logic unit performs the logical operations such as comparisons and arithmetic
operations such as addition.

The control unit of the CPU moves data in and out of the CPU via the data bus, which is
connected to the memory of the computer.

The control unit of the CPU accesses memory addresses by using the memory address bus, which
is connected to the address section of the computer's memory.

Data is moved around the CPU via the data bus. Memory addresses are accessed via the memory
address bus. Each item of data or program instruction is stored in binary in a memory location.
Every memory location has a unique address.

Figure 2.6 . CPU block diagram

Control unit .-
Primary Memory (sometimes referred

- to as Immediate Access Storage (lAS»

Arithmetic Memory Bus RAM- ~
Logic Unit ~ -- ~

holds data
and- I~ Cache - -- I .. -- 1- program

instructions

Data Bus G
In some definitions, the primary memory is not considered part of the CPU.

141



Computer Fundamentals

© IBO 3.2.2 MEANING OF TERMS BIT (B) AND BYTE (B)
2004

Computers are binary devices. They operate by storing instructions and data as sequences of 1s
and Os. In terms of these Is and Os the following definitions apply:

The term bit refers to the individual 1 or O. In a 32 bit computer each memory location
allows 32 bits to be represented. A 32 bit memory bus allows 32 bits to be transferred at
anyone time. A bit is denoted by the symbol of the single letter b.

The term byte refers to the standard grouping of 8 bits into a single unit. A single
character such as the letter A is stored in one byte. Thus in a 32 bit computer a computer
can store 4, 8 bit bytes of data. A byte is denoted by the single letter capital B.

The notion of a byte being 8 bits is also used to denote the file size of files stored on disk.

The following table outlines the meaning of various prefixes which can be used to represent a
quantity of bits or bytes. For example 8 Mb represents 8 million single bits and 8 MB represents
8 million bytes.

Figure: 3.5

Term Size

Tera (T) 1,000,000,000,000

Giga (G) 100,000,000

Mega (M) 1,000,000

Kilo (k) 1,000

The above terms are commonly mixed with bits (b) and bytes (B) and you need to be careful
when dealing with these types of prefixes.

For example there is significant difference between these two terms 10 MB and 10 Mb.

10 MB = 10,000,000 BYTES and

10 Mb =10,000,000 bits.

To compare these two terms we need to convert each to a common measurement, in this case bits
is a useful common measurement for comparision.

10 MB = 10,000,000 BYTES = 10,000,000 * 8 bits per byte =80,000,000 bits

10 Mb = 10,000,000 bits.

Thus 10MB represents a measure that is 8 times greater than 10Mb.

Scientific notation uses the decimal system ie 1 km means 1 kilometre and 1 kilometre is simply
1000 metres. In this case the measurements are precise.

In computing, the measurements such as K are abbrebiated as shown above in the table. For

example 1 KB =1024 (2 10) bytes, but we normally use the term KB as an approximation for 1000
bytes.

142



©IB03.2.3
2004

Computer Science

THE TERMS WORD, REGISTER AND ADDRESS AND
THEIR USE IN THE STORAGE OF DATA AND
INSTRUCTIONS

MACHINE INSTRUCTION CYCLE

John von Neumann is often credited with the concept that program instructions can be coded and
stored together in memory with coded data - the stored program concept. It was a significant
step forward since the ability to store, and therefore change, the program in computer memory
allowed the machine to become a general-purpose device. His landmark paper on the subject is a
synthesis of work carried out by others, notably J Presper Eckhart Jr and John Mauchly at the
University of Pennsylvania.

The CPU works with a fixed number of bits, usually a multiple of 8-bits. This is known as a
word. Typically, this equates to the size of the registers - temporary storage locations capable of
holding just one word. For example, most PC machines have 32-bit processors, therefore the
word size is 4 bytes and the registers will each hold 32 bits. The memory will thus hold 32-bit
data items too. If a larger size is required to store a given data type (e.g. an 8-byte integer), it will
be held in successive memory locations.

Since the registers are also needed to hold the addresses of instructions and data, as well as the
instructions and data themselves, the register size also determines how much primary memory a
computer can have.

© IBo 3 2 42004 ••

When a computer program is stored as a series of instructions in machine code in primary
memory, the following steps are carried out (this model is simplistic compared with the operation
of a real processor):

Figure: 3.6

fetch instruction from memory to
control unit

decode instruction in control unit

execute instruction (data may be
fetched from memory)

finished

store results of execution (if any).
Check for next instruction. more to do

© IBo 3252004 •• PRIMARY MEMORY AND SECONDARY MEMORY
(STORAGE)

Primary memory is used by the computer to store currently executing programs and the data used
by these programs. The program instructions and data are represented in memory as binary
machine code by electronically indicating a 0 or a 1. This is done by using a constant voltage
level to indicate a 0 and then using an lixed voltage increment to represent a 1.

143



Computer Fundamentals

There two main areas of primary memory: Random Access Memory (RAM) and Read Only
Memory (ROM).

RAM cnables programs and data to be loaded for execution and use. The contents of RAM
can be over-written and, therefore, it is a general purpose storage area. The contents of
RAM require the voltage level to be maintained. If power is lost, the contents of memory
is wiped. For this reason RAM is sometimes known as volatile or short term memory.

ROM is used to store programs permanently e.g. the start-up instructions of the operating
system are permanently loaded into ROM. The contents of ROM cannot be changed and
for this reason ROM is sometimes referred to as non-volatile memory.

Another area of primary memory that is increasingly being used in the design of computer
systems is that of CACHE.

CACHE MEMORY
There are two main types of RAM, fast dynamic RAM (DRAM) or even faster static RAM
(SRAM). Naturally SRAM is more expensive and is thus not used for all of the lAS. However,
some SRAM can be placed between main RAM and the processor as a temporary store for blocks
of program instructions. When the processor has to look for the next instruction, chances are it
can be found in the cache. Modem processors also contain a small amount of fast memory
incorporated into the processor itself, internal cache, which is speedier still because of the very
short distance travelled.

The cache on the microprocessor itself is referred to as Level 1 cache and that between main
memory and the processor as Level 2. Whereas the primary memory may be anything from 16 to
128 Mbytes for a typical microcomputer (personal computer), the primary memory of a
mainframe or supercomputer may reach Gigabytes in size. The cache memory is typically of the
order of a Mbyte.

VIRTUAL MEMORY
For some programs, the primary memory is not large enough to hold the whole program at the
same time. Various schemes are used to handle this but candidates simply need to know that fast,
random access secondary memory (hard disc) can be used as an extension of primary memory.
The area of disc used for this purpose is commonly known as a swap file and parts of the program
are swapped into primary memory from here as needed.

© IBo3.2.6
2004

SECONDARY MEMORY, SEQUENTIAL AND DIRECT
ACCESS

Secondary memory (storage) refers to permanent memory storage such as disks and tape.

Data stored in primary memory must be written to secondary memory if it is to be saved
permanently. Data present in primary memory is lost if the power to the memory is switched off.

Backing storage is required to keep information which is not needed in memory all of the time
and which may be too large to fit into the memory of the computer. Both programs and data are
held on backing store. The two main ways of storing data on backing store are sequential-access
and direct-access. For example, a payroll program has to access the data file containing all the
data on all of a company's employees. It accesses this data one record at a time, one after the
other. This is sequential access.

144



Computer Science

Direct access (sometimes called random access) would be used, for example, in a supermarket
where details of all of the items for sale are held in a file. The computer needs to locate an item
quickly by moving directly to its record.

MAGNETIC TAPE
This is a serial-access medium: to read a given record on the tape you must first pass by all of the
preceding records. A typical magnetic tape as used in traditional data processing might be 2400
feet in length and half-an-inch wide. More modem versions are tape cartridges which are quite
compact (about twice the size of a cassette tape, typically) and store several Gigabytes of data.
They are often used for backing up large volumes of data. While no new systems would specify
tape drives of the old reel-to-reel type, there are still legacy systems in use. The data on a tape is
stored in parallel tracks:

Figure: 3.7

Tracks

•
2

3

4

5

6

7

8

P

Tape movement

Inter-block gap Frame

Parity track

A bit (binary digit =1 or 0) can be stored in each track, with 1 byte per frame as shown above.
The diagram shows a 9-track tape (other types are possible). A basic unit of data transfer is the
byte which is made up of 8-bits. The remaining track (not usually located on the edge of the tape
by the way) is a parity track. When a byte is written to the tape the number of lis in the byte is
counted, the parity bit is then used to make this number (of lis) even (even parity) or odd (odd
parity). Then when the tape is read again, the parity bit is checked to see if an odd bit has been
lost somewhere.

Figure: 3.8 Examples of Parity Checks

1 2 3 4 5 6 7 8 P

0 1 1 0 1 0 0 1 odd 1

0 1 I 0 I 0 0 I even 0

1 0 0 0 1 1 1 1 even 1

145



Computer Fundamentals

To avoid possible errors, the speed of the tape drive must be held very steady. However, it does
take time for the tape to get up to speed so data is written in blocks separated by inter-block gaps
- see diagram above.

Smaller tape units are available for microcomputers and are typically used for backing up
information from fixed disc packs. Tape streamers are used in microcomputers (PCs) for the same
purpose as they are a very efficient way to store a lot of data. A typical tape cartridge used for this
purpose can store several hundred Gbytes.

MAGNETIC DISCS
Serial access using tapes has its disadvantages, particularly if you are in a hurry. If you are
running some kind of information system in which speed is important, you want to be able to
locate a given record very much more quickly than be using serial access on magnetic tapes.

You can compare serial access and direct
access by using a musical analogy, to find a
given song on a tape cassette requires you to
wind on through all those intervening
tracks. On a CD player, however, you can
directly select the piece you want to hear.
There are two main types of magnetic disc
in general use, the removable floppy disc
and the fixed (or hard) disc. A floppy disc
stores up to 1.5 Mbytes or so and a typical
PC hard disc stores up to 100 Gbytes or so
(these things change quickly, of course). A
mainframe disc pack may well store several
hundred Gigabytes. A hard disc consists of
several plates of magnetic material arranged
on a single spindle:

./
DlSCS--7

\
/

Cylinder

Read/write heads

DISC SURFACE TERMINOLOGY (HL ONLY)

The disc surfaces themselves are divided up into sectors and
tracks. A typical floppy disc has 10 sectors and 80 tracks. A
hard disc may have several hundred tracks on each surface
(or side).

DISC ASSEMBLIES

Tracks·",",",=--I+il

In the disc pack, the read/write heads are all attached to a
common arm, so that all are reading the same track and sector
on each surface. This is known as a cylinder.

Spindle

i
cylinder

Depending upon the computer operating system in use,
several blocks may be transferred from disc to Immediate Access Store (memory) in one go and
this is referred to as bucket size. Because each block has a unique address, it is possible to store
the addresses of files, and their sizes, in a catalogue on the disc itself and data (or programs) can
be retrieved by looking up the address in the catalogue.

Each part of the disc pack can be referenced by its surface,
sector and track number and this combination will be unique
for the pack. This part is known as a block.

146



Computer Science

OPTICAL DISCS
Essentially DVD and CD ROMs are related technology. The CD ROM in your PC is the same as
those used for playing music, but the data is stored in a different format. The surface of a CD has
lands and pits in the surface each of which can represent binary states. These very small
irregularities are read by a reflected laser beam. In practical terms CDs are useful for distributing
information because they are portable and rugged (unlike, say, floppy discs) and they store much
more data (from around 600 Mbyte for conventional CD up to 2.7 Gbytes for DVD formats).
There are also CD-Rs (recordable CDs) on the market which you can write to once but read
many times (Write Once Read Many =WORM). Also increasingly affordable are the CD-RWs
which can be used like large floppy discs. These compete with such magnetic media as ZIP discs
which typically hold a few hundred Mbytes of data.

EXERCISE 3.3

1. As a programmer you are asked to determine the size of a file. The file is to contain text
data that is collected from an external source. The data for the file will be transmitted once
per day for a period of 3 hours over a data line that transmits at a rate of 100,500 bps.

Calculate the daily size of the file and use appropriate prefixes.

It is required that the file be stored online for a period of two years and that a duplicate will
also be need to be kept. Estimate the size of the data at the end of the two year period,
assuming that no data is stored at the start of operation.

2. Justify a choice of secondary storage medium to store the daily file and the copied file.
Why might these be different?

3. The daily file needs to be copied into memory and the system manager is worried that
there might not be sufficient room. The computer they use has 2 MB of RAM of which
10% is taken up by the operating system, 20% by the normal I/O functions (i.e. display)
and 40% is taken up by the other applications that run. Has the manager reason to worry
and if so, by how much does the RAM need to be increased. Is this likely to be feasible?

••••••••••••••

SEQUENTIAL (SERIAL) AND DIRECT ACCESS
Sequential file access means that data records cannot be accessed without reference to other
records in the file. A sequentially organised file on disk or tape can only be accessed in a

sequential manner. For example, say we wish to access the record in the 100th position in the file
and that the file is organised in a sequential manner. In order to do this we must read through the
previous 99 records. The logical order of the records is important in terms of access.

A sequential file implies that the records are ordered in some way. Usually this means the records
are sorted according to the value of the primary key. A serial file has a sequential organisation, i.e.
the records must be searched one after the other, but the records are not sorted into any order.

147



Computer Fundamentals

Figure: 3.9

read byte 6

seek to read byte 6
without reading bytes 0 to 5

Direct file access is much faster in that data records can be retrieved by specifying the record
position without reference to other records in the file. The file management system can then
identify the track and sector position that the record is in and directly access the data by
positioning the read arm of the disk unit in the appropriate way. The logical order of the records is
not important in accessing the records. In fact the records can be in completely random order.
Hence the term random access file.

In both cases, a key field is required called a primary key, which is used to identify the record. For
example, a car registration number is a primary key. In the case of a direct access file it is
necessary to be able to link this primary key to the record number in order to effect direct access.

ADVANTAGES, DISADVANTAGES AND APPLICATIONS OF
SEQUENTIAL AND DIRECT ACCESS.
Sequential file access is used to store data that is normally processed in the order that it is stored.
For example, a set of temperature data is normally only processed from the start to the finish and
it is not necessary to access an individual record very often.

The key advantage is that it is simple to organise and there are few processing overheads
associated with dealing with the file. Data stored in a sequential file can be written to either a disk
or tape.

The main disadvantage is that interactive/online processing is not possible using sequential
access because access times would be too slow.

Direct access files are used where high speed access is required. For example, a large bank would
store their data on customers in a direct access file. In order to ensure that data could be retrieved
quickly the customer's bank account number would be the primary key. This number would be
used to gain direct access to the record number.

The key advantage is that records can be accessed quickly. The main disadvantage is that data
can't be accessed in sequential or sorted order as the records are placed randomly on the disk. To
gain sequential or sorted order access an index file is required.

Direct access files are only possible to implement using disk technology and can't be
implemented on tape.

148



Computer Science

EXERCISE 3.4

1. Define the terms file, record and field.

2. Given that a file stores details about students, estimate the size of the record, using the
normal prefix. You should include at least 10 fields. Assume a string takes one byte per
character and a number (real or integer) takes up 4 bytes per NUMBER, not digit. (Note:
related to previous section).

3. Define the term sequential file access.

4. Define the term serial file.

5. What advantage does a sequential file have over a serial file?

6. Define the term direct access.

7. What is the difference between the terms file organisation and file access method?

8. Why does DISK allow both sequential and direct access?

9. Why does tape allow only sequential access?

10. In general, compare the advantages and disadvantages of the use of either access method.

11. For each of the following, state why, and give reasons why, one access method is likely to
be preferred to the other:

* Customer file in a video store.

* Customer file in a bank.

*Year's set of daily maximum and minimum temperatures for a single town.

* A file required to store the hours worked and rate of pay for each employee.

12. Make a list of 10 further applications that use files. For each, state what access method is
used and give and advantage and disadvantage associated with the access method for each
application.

.......... aaaaaaaaa

~6~23.2.7 MICROPROCESSORS
A microprocessor is a device similar to a CPU but lacking significant amounts of primary
memory. It has a single program stored in non-volatile memory and typically a number of
registers for volatile storage. It is, therefore, similar in some ways to a computer, but lacking the
ability to change its program.

Microprocessors are very common. There are, perhaps, a couple of dozen in your home, school
and car. Examples of microprocessor applications include the following (cars and washing
machines are specifically mentioned in the program guide):

149



Computer Fundamentals

Object Function(s) of microprocessor

Controlling injection of correct amount of fuel to the engine;
Car automated braking systems; airbag controllers; in-car navigation

systems; automatic car washes;

Washing machine Controlling water level, temperature, wash time, spin speed.

Camera
Controlling exposure time; auto focus calculation; conversion of
image to storage as a file (digital camera).

Video Tape player Timing; programming, station selection;

CD player
Track selection; extracting time and other track details;
conversion of optical to electrical signals;

TV with remote control; TV with teletext; control of central

House
heating; control of air-conditioning, digital clocks; microwave
ovens; dishwashers; printers; computer ports (USB, printer,
modem); burglar alarms; mobile telephone.

Classroom
Calculators; digital watches; aircon or heating control, security
systems.

Often, microprocessors are used for similar tasks and may have a standard set of input and output
ports for analogue data. These are usually known as micro-controllers.

EXERCISE 3.5
1. Draw and annotate a diagram of a CPU. Include in your diagram RAM, ROM and

CACHE. Make sure that you include the key components including any internal
communication pathways.

2. Describe the function of the ALU.

3. Outline the function of the CU.

4. Describe the purpose of the memory and data bus.

5. Outline the role of RAM and ROM and explain why ROM can't be used to store user
programs or data during program execution.

6. Outline the role of CACHE.

7. Define the terms primary and secondary memory.

8. Describe the purpose of primary and secondary memory.

9. Describe by use of a diagram how a disk operates.

10. Make a list of all the microprocessor controlled devices you use in one day.

••••••••••••••
150



Computer Science

© lEO 3.2.8 INPUT DEVICES
2004

The fundamental role of an input device is to enable data to be entered into a computer system.
Input devices are often used by humans to input data, e.g. a keyboard, but they can also be
directly connected to a computer e.g. a bar code reader. The input device therefore acts as the
connection point between the internal electronic world of the computer and the external world
from whence the input comes. An input device must, therefore, be able to be interfaced, or
connected, to the computer and to be interfaced, for example, with the human using the input
device such as keys on a keyboard.

The diagram in figure 4 outlines these key features of input devices.

Figure: 3.10 - Input Process

-
, ,
, Input , Processing
~

,
device Unit,

, ,

human or
data

collection

"

Interface between
human and device

(e.g. keyboard)

•Interface between
input device and the

processing unit

We now tum our attention to a discussion of the main features, advantages, disadvantages and
applications of a range of computer hardware used as input devices.

LIST OF DIFFERENT INPUT DEVICES
Keyboard

A keyboard is really a series of switches each of which generates a series of different pulse codes
so that the computer knows the one that was pressed. They are very useful for typing in text, with
word processors for example. Ergonomic keyboards provide wrist rests and place the keys at a
more comfortable angle for prolonged use; thus preventing injuries (such as repetitive stress
injury (RSI) or carpal tunnel syndrome).

Keyboards, of course, are very useful for entering and editing text and they feature short cut keys
(function keys and numeric keypads) to speed up common operations.

Mouse

The movement of the mouse generates a series of pulses by which the computer can tell the
direction of mouse movement. This is often used to move a pointer on a screen, select a menu
option or change and create different windows in a Graphical User Environment (GUI). The most
common example is the Windows operating system from Microsoft or the systems used by Apple
Macintosh machines. This type of environment is sometimes called a WIMP environment:

WWindows

I leons

M Menus (or Mouse)

P Pointers (or pull-down menus)

151



Computer Fundamentals

Graphics Tablet

A graphics tablet is a kind of flat board on which a pen is moved. The pen holds a magnet and
underneath the tablet is a fine grid of wires. Movements of the pen cause disturbances in the
electrical pulses in the wires and the co-ordinates of the pen can be detected. It is used, for
example, in sophisticated computer art packages and video-editing systems for special effects.

Light Pen

Works with light, there are two main types. One is used to point to areas on the screen and works
by detecting the light emitted by the TV. TVs and monitors work by directing a narrow beam of
electrons onto a fluorescent surface. This beam performs a regular scan, starting at the top left­
hand comer of the screen and travelling down in closely spaced lines until it reaches the bottom.
All of this happens too fast for us to detect but it does mean that the beam passes a given spot at a
time which can be calculated from a knowledge of the beam's speed of travel and the number of
(beam, not text) lines on the screen. Thus, this type oflight pen can be used to return a position on
the screen. It is mostly used in drawing programs and CAD (Computer-Aided Design)
applications.

The other type of light pen, seen in shops, emits a light beam and detects the amount of light
reflected. Dark areas reflect less, light areas more. A sensor detects the amount of light reflected.

Light beam

Source

Detector

Light pen

As the beam passes, light areas reflect more than the dark bars, giving a stronger pulse.

o o 1

darker lighter darker lighter

A typical use of this kind of light pen is to read bar codes, e.g. in department stores and libraries ­
see picture below). Supermarkets typically use a laser scanner which is fixed because this speeds
up the reading of the barcodes, particularly because many items sold in supermarkets are easily
handled and it is then quicker to pass them over a bar code reader than to use a hand-held light
pen.

A library card with a bar code:

152



Computer Science

Optical Mark Recognition (or Mark Sensing)

This uses the techniques described above to detect black
marks on white paper. A common application is in
examinations where multiple choice papers have several
boxes; candidates mark the box corresponding to the correct
answer (they hope!), usually with a soft pencil. The forms
are an example of pre-printed stationery, some information
is already printed on the form (e.g., the questions). Your IE
registration form is a good example of this. The picture
shows part of the form used in multiple choice examination
papers (together with some helpful hints on its use).

Optical Character Recognition

•

•
•
•
•
•
•
•••
•
•••
•

Scan line

The principle of using reflected light is also applied to scanners, fax machines and optical
character recognition (OCR). The scanner passes a beam of light over a page and measures the
reflected light. This gives a two-dimensional pattern of light and dark, which can be represented
by Is and Os.

When you have the characters or drawings converted to a binary pattern then you can send them
as a string of electrical pulses to a fax machine or import them into a computer program. With
OCR, you can try to match the binary patterns to patterns stored in the computer's memory and
each recognized character is then assigned its standard code (ASCII usually).

153



Computer Fundamentals

Magnetic Ink Character Recognition (MICR)

number
account number

(digits obscured for security reasons)

The 'funny-looking' numbers at the bottom of the cheque are encoded in magnetic ink for use
with MICR readers at the bank. Some banking systems prefer MICR because of the increased
reading speed and extra security against forgery compared to OCR. However MICR is much
more expensive than OCR. When the cheque is received by the bank, the amount has to be
encoded in the blank space on the right before the cheque is processed.

Automatic data entry

The scanning and reading techniques described above can be grouped under the general heading
direct data entry methods. Do not confuse this with automatic data entry. This occurs when a
sensing device is connected permanently to a computer and the computer receives data from the
sensor at intervals. Sensors are used to collect data when processes are automated, such as car
washes, automatic washing machines, heating control in buildings, petrol delivery in a modem
petrol (gas) station. These processes may be controlled with microprocessor applications rather
than general purpose computers. In this case the program will be stored in ROM and very little
RAM will be needed.

Digital cameras

These are becoming increasingly common, with photographic quality and prices are now
comparable to good quality conventional cameras. They can be used with a monitor for
applications like video conferencing or simply to take photographs to display on a web page.
Usually, some form of data compression is used when storing and transmitting photographic
images to save space and decrease transmission time. A common standard is JPEG (Joint
Photographic Experts Group).

Speech recognition

In this technique, the application digitally records speech and attempts to match the digitized
patterns to the patterns of known words in memory. Since there are a wide variety of speech
tones, accents and pitches, each individual using such a system has first to 'train' the application
with a set of standard words. The accuracy is said to be at about 90% for dictation into a word
processing document.

Robotics

A huge topic in its own right, robots are not the kind of thing you see in science fiction movies but
typically pieces of industrial machinery used in dangerous or tedious, repetitive tasks. A robot is
a programmable machine.

154



Processor unit

computer :SCIence

EXERCISE J.6
Note the section on input devices is part of a level 3 objective, hence students can expect
questions that use the terms: analyse, compare, discuss, evaluate, explain.

1. Construct and complete the following summary table. Use the following headings:

Name of input device,

key features,

advantages,

disadvantages,

brief list of possible applications.

2. Explain why a supermarket may choose to use a bar code scanner.

3. Discuss an advantage and a disadvantage of using a standard keyboard to allow customers
in a store to look up the price of an item in a store.

4. Compare the use of voice recognition as opposed to the entry of a password via a keyboard
to allow employees entry to a secure area of a building.

5. Activity. Robotics is a very exciting field. Using the resources available to you explore
how robots work and the role input devices play in their functioning .

••••••.• >....... i •• lt .. i ..

~6g2J.2.8 OUTPUT DEVICES
In a similar way to input devices, output devices are required to link the world of the computer to
either our human world (i.e. display information on a screen or printer), or to interface with a
communications channel to another computer device. Figure 5 outlines this key concept of
interfacing to the output device.

Figure: 3.11 - Output Process

Human

f---'---'--:--1:~ Output device ---<
L-. ----' Other device

Interface

A range of output devices are now briefly discussed. It should be noted that a number of devices
can act as both an input and output device. A good example is the touch sensitive screen or
monitor.

Video Display Unit or Monitor

A VDU is like a TV screen but often has higher resolution, the combination ofVDU and
Keyboard together is usually referred to as a terminal. A typical mainframe computer will have
very many such terminals connected to it. On a PC - which is essentially a terminal with its own
microprocessor and RAM - the VDU is often known as a monitor. VDUs may be monochromatic

155



Computer Fundamentals

(single colour) or polychromatic. The definition or resolution of a VDU is a function of the
number of picture elements or pixels on the screen itself. Each pixel requires a memory location
to store information about its state (usually its colour). Therefore polychromatic VDUs require
more memory to store information about the state of the screen. Very high resolution monitors
(Graphical Display Terminals or GDUs) might be used in special applications such as
cartography, commercial graphics and design work.

LCD

Liquid Crystal Display such as is found on small computers
like Palm Pilots and other PDAs (Personal Digital
Assistants). Because this type of screen doesn't perform well
in low light conditions, it is often 'backlit'. However, they
consume very small amounts of power compared to
conventional displays and are thus useful in battery operated
devices.

For laptop computers, passive and active LCD screens are
available. The active types have one charge controller (colour element) per pixel giving a brighter
and sharper display. Other advantages (besides low power) of these screens over conventional
monitors using crts is that they are lighter, flatter, thinner and give out virtually no radiation. They
are now replacing conventional crts on desktop machines as well.

Printers

Printers may be classified in a number of different ways:

• By the amount of text, i.e. characters by line or lines or page.

• By character formation: matrix vs non-matrix.

• By method of printing: impact vs non-impact.

• By colour: colour vs black and white.

Dot-matrix printers used to be about the cheapest option but have now been overtaken in price/
performance by inkjet printers and are sometimes still found on low-volume systems such as PCs.
They are character, impact and matrix printers, each character is produced by a set of pins
punching an inked ribbon onto the page. The lowest quality are 9-pin printers, more pins (24-pin)
means higher quality. Typical printing speeds are 50-200 characters per second. You can still see
them in small businesses used for printing credit card and other receipts.

Daisy wheel printers by contrast work like old-fashioned typewriters, each solid character, held
on the end of a spoke, strikes through an inked ribbon onto the paper. The quality is better than
that of a dot-matrix printer but the character set is fixed and, as it is a non-matrix printer,
graphical output is not possible. This type of printer is becoming rare. Good quality is now
obtainable by other printers (inkjet, laser) at comparable or even lower cost and without the
associated noise of the daisy wheel.

A typical Lineprinter is based on a similar concept but there is a solid character for each position
across the page and therefore the: print-head does not move. Since they print 1 whole line at a time
they are very much faster than character printers.

Dot-matrix and daisy wheel printers are rarely seen and have been superseded by Inkjet and
Desktop Laser printers. Inkjet printers hold a cartridge of ink which is sprayed onto the page in

156



computer :SCience

small dots, they are matrix printers. The dots form the characters much like a dot-matrix printer.
However, because the ink is liquid it spreads a little on the page and makes a much smoother
appearance. Colour versions are also available and are more versatile than their dot-matrix
equivalents. Laser printers print a page at a time using a whole-page matrix of dots, they are
very similar to photocopiers in action. A laser beam creates very small dots of static charge on the
paper and powdered toner (ink) is attracted to the charged areas. The paper is then heated and the
toner melts onto the page. The quality of these printers is very high and colour laser printers are
now increasingly affordable.

Plotters

There are two main types: electrostatic and pen plotters. Electrostatic plotters (available in black
and white and colour) make an image by burning specially prepared paper with a small spark.
Pen-plotters hold a cartidge of several pens of different colours and actually draw onto the page,
giving a higher quality ouput. Both types are able to plot onto large sheets of paper which can be
of fixed size (flatbed plotters) or on a large roll of paper (drum plotters).

Touch Screen

These screens are used both as input and output devices, the options can be shown with text and
or graphics and the position of a press on the screen can be detected. These screens are often used
where general information is being provided (banks, hotels, shopping centres) for users who may
not be competent computer users (yes, there are still some of these!).

EXERCISE 3.7

1. As with input devices, construct and complete a summary table. Use the following
headings: Name of output device, key features, advantages, disadvantages, brieflist of
possible applications.

2. A school wishes to print the computerised student reports centrally. The school currently
uses an 8 page per minute laser printer. There are 1500 students in the school and each
student studies 8 subjects and receives a 'homeroom' report also. each report is an A4
single sheet. What are likely to be the limiting factors associated with the current output
device.

3. In relation to the above question, recommend what action the school could take to ensure
that the output task is accomplished in a reasonable timeframe.

4. In an architect's office they use a plotter as a key output device. Explain why the plotter is
used in preference to an A4 laser printer.

5. A touch sensitive screen can act as an input and output device. In relation to a home
personal computer (PC) compare the advantages and disadvantages of using such a device
as compared to using a normal keyboard and monitor.

.....................

157



Computer Fundamentals

©IB03.2.9
2004

RECENT DEVIELOPMENTS IN COMPUTER SYSTEM
ARCHITECTURE

This section reviews some recent developments in the following areas:

• Processor architecture.

• Memory technologies.

• Secondary storage devices.

• Data communications.

Processor Architecture

The architecture in which a single instruction is fetched into the CPU then decoded and executed
is often called the 'von Neumann architecture' after John von Neumann who first described it in a
formal paper. This can be restrictive (the von Neumann bottleneck) since, for example, it is often
more efficient to have a single task performed by many people (as long as the task can be split
into suitable sub-tasks).

Recent developments have included the single and multiple pipeline architectures. In the single
version an instruction can be fetched and another decoded while the first is still executing:

Figure: 3.12

Execute I
2

3

Time

I
Get

instruction

Get
instruction

Get I
instructionl

Execute

Execute

I
I

In the multiple version, pipelines. work in parallel to increase the rate of processing of instructions
still further.

A similar idea is to use multiple processors in parallel, but in both these cases some additional co­
ordination is needed in case one instruction depends upon the results of another executing at the
same time or later on.

Supercomputers and mainframe computers make extensive use of multiple processors to share
the workload. In relatively recent developments such as Deep Blue and the Cray T3E
supercomputer, massively parallel architecture is employed.

Primary memory Technologies

The standard RAM technologies have been SRAM (Static RAM) and DRAM (dynamic RAM).
Static RAM is faster and more expensive so is used for cache memory. DRAM is usually used for
the main memory. Refer to the activities section for places where you can find out more about the
complexities of this subject.

The point always made about ROM is that it cannot be written to except by a special machine (the
blower). An early development to allow testing of programs stored in ROM was the EPROM or
Erasable Programmable ROM. These chips can be recognized by a special quartz window on top

158



Computer Science

of the chip. Shining UV light through this window will erase the chip's contents and allow it to be
re-programmed.

With the very rapid advances in modem and other technologies (scanners, CD-Writers, digital
cameras), there was a need for a ROM that could be upgraded in the component itself and these
newer devices are fitted with Flash ROM in which the program can be changed by downloading
suitable software from a website.

Secondary Storage Devices

We have mentioned ZIP discs and drives and CD-RW which are relatively new techniques for
storing large (lOOMB - 3 GB) data on portable media. There are a number of new storage media
for portable devices like MP3 players and digital cameras. These include:

• Smart media.

• Compact Flash.

• Memory stick.

• Multimedia Card.

These media contain non-volatile memory, are typically
very small and have low power consumption. They are
ideal for use in small portable electronic devices which
need to store data. Typical sizes range up to 64 Mb on a
card about twice the size of a standard postage stamp.

Re-writable flash memories which are non-volatile are
now common, typically in 128 MB and 256 MB sizes.
These are small, robust and easily connected to USB ports.
They may even contain executable code as well as data.

Data Communications

Media cards from two digital
cameras

Increasingly available are two similar types of device. The mobile phone, which has data
acquisition features for web browsing and email reading. With the advent ofWAP (Wireless
Applications Protocol) this technology is expected to improve the amount of data that can be
transferred to a mobile phone thus enabling portable web browsing, contact with company
intranets and VPNs (Virtual Private Networks).

The PDA (palm top or personal digital assistant) which is useful for storing contact information
and can be synchronized with a PC. Probably these two devices will converge so that you can
carry your schedule and reminders with your telephone and, again, these can be linked to your
company's network (and company databases) too.

These kind of technologies are supplemented by ever faster 'backbones' (systems for transmitting
data in networks, including the internet) and associated technologies such as ATM (asynchronous
transmission) via cable modems (about 30 times faster than a 56 k modem).

Further resources

It is always worth reading about recent developments in technology, they happen faster than this
book can cover them. Try computer magazines and technical websites for items of interest.

159



Computer Fundamentals

The examiner will probably not ask questions on specific technologies, unless they are part of the
Case Study, so you don't need these; a more likely type of question on this topic is:

Outline any two recent developments in processor architecture which have improved the
speed at which programs can execute [4 marks]

Then you are free to briefly describe any two that you happen to have read about. While you do
not need details for your studies you may want to explore any of these the topics for an extended
essay.

Websites

Of course, these may have moved or changed; you can use any search engine to find new ones.

More detail on processor architectures can be found at, for example, pages by John Morris of The
University of Westem Australia. There you will find notes such as:

http://ciips.ee.uwa.edu .aul~morris/CA406/pipelines .html

Deep Blue (a massively parallel chess-playing computer) information can be found at:

http://researchweb.watson.ibm.com/deepblue/meet/html/d.3.2.html

Supercomuters and their applications are described at:

http://www.cray.comJsupercomputingl

Cray's customers include:

Department of Defense Naval Oceanographic Office (http://www.navo.navy.mil/)

Electronic Data Systems (http://www.eds.comJ)

NASA's Goddard Space Flight Center (http://www.gsfc.nasa.gov/)

United Kingdom Meteorological Office

(http://www.met-office.gov.uk/research/nwp/numerical/computers/index.html)

NOAA High Performance Computer Center (http://www.hpcc.noaa.gov/)

Great information on hardware topics can be found at:

http://www.hardwarecentral.com/hardwarecentral/tutorials inclusing a great article by David
Risley on Memory types.

Since these sites may change, look for updated info at http://www.ib-computing.comJ

160



DEFINE OPERATING SYSTEM

OPERATING SYSTEM FUNCTIONS

Computer Science

~6~~3.3 COMPUTER SYSTEMS
© IB0 3312004 ••

An 'operating system' is a collection of programs which deal directly with the hardware system
and sub-systems, provide user interface(s) and log the activities taking place in the system.
Examples of operating systems are Linux, MacOS and Windows. Network operating systems,
such as Novell Netware, might be encountered in some schools.

©IB03 3:Z
2004 ••

Peripheral Communication

Printers, mice, keyboards, monitor screens, robot arms etc., are all peripheral devices (hardware
outside the CPU). Hardware only deals with data coded into binary machine code (unless digital
to analog conversion has taken place, see section 3.5 .9). The operating system keeps track of the
device drivers - software designed to interface directly with the hardware - on your system and
signals if they are not operating correctly. The as provides a standard interface between
hardware devices and applications; an application can thus simply use a <print> type instruction
within the high-level language rather than the low level commands associated with sending
characters, line breaks etc. In practice it's a little more complicated.

Coordinating concurrent processing

Processes or jobs are running on your system all the time the computer is on. The curious user can
get a list of these processes - although it won't always mean much to the un-initiated. The as
handles the loading and unloading of these processes to and from primary memory.

Memory management

The as ensures that each process operates in its own (virtual) memory space and doesn't change
memory belonging to another process (well, that's the theory, I'm sure we've all seen error
messages where there has been a "memory access violation" or something similar). The as also
deals with the moving of parts of processes to the swap file mentioned earlier.

Resource monitoring

Running processes can be allocated resources - how much processor time they can have, how
much memory they need and so on. The OS attempts to keep all processes running by managing
this access. It doesn't always work, you may have noticed.

Accounting and security

Major operating systems designed to be used in a multi-user, networked, environment have to try
to make sure that only those users who are registered with the as can get access. The manager,
via as functions, controls this feature. Accounts are also usually kept of the activities conducted
by each user. These logs of activity can be huge but may be required if there are security or other
problems; one user may be found to be running a process that is 'hogging' all the resources. It is
possible to discover the activities of unauthorised users (hackers) by looking at the' audit trail'
kept by the accounting software.

Program and data management

This function includes some of those already described, the as must be able to keep track of
which files, ports and other data resources a particular program is using to read or write
information. Otherwise, for example, one program might end up writing to another one's files.

161



Computer Fundamentals

The OS will also handle the transfer of data and/or program instructions from files into primary
memory and vice versa.

© IB0 3 3 32004 •• CHARACTERISTICS OF COMPUTER SYSTEMS AND A
COMPARISON OF THESE CHARACTERISTICS AND
APPLICATIONS OF DIFFERENT KINDS OF
COMPUTERS

Computer systems are made up of input, processing and output-communications hardware
devices and the systems and application software required to operate and connect (interface) the
components so that they can function and communicate.

Computer systems can be small and consist of single computer such as a personal computer (PC)
or can be composed a of a number of computers linked together into a large network of
computers.

Computers can also vary in the size of their memory and secondary storage and speed of
processor. And, they can vary depending on the type of operating system that is loaded.

A typical PC's mode of operation is as a single user computer. This means that it can be used by
one person at one time. Most PCs also allow a single user to perform more than one task
simultaneously e.g. to edit a word processed document and download a file from the Internet at
the same time. This is known as 'multi-tasking'.

A single computer such as a PC consists of the following components:

• Input devices e.g. mouse, keyboard, scanner.

• Processing device: processor, primary memory and control unit.

Output and communication devices e.g. printer, modem.

• Backing store (Secondary storage) unit e.g. Hard disk.

• System Software e.g. operating system.

• Application software e.g. accounting package.

• Stored Data e.g. data files.

Figure: 3.13 PC Computer System

Application software

/Input devices f-
I

/
/

loaded
/

/
/

~
System software

Processor unit

Secondary
storage

f-----1~Output devices

\ S
\

\

Iml:Qed
\

store \
\

data

stored loaded
-----~~ -----~

162



Computer Science

Larger computer systems also have these same components but also have connections to a larger
number of peripheral devices and to other connected computers via network connections.

Computer systems can be classified into a number of categories. These include: Personal
Computer, Portable Computer, Network Computers (Servers), Mainframes and Super Computers.

PERSONAL COMPUTER (PC S) AND PORTABLE
COMPUTERS
The desktop PC (or microcomputer) typically has 32-128 Mb of RAM (primary memory), 5 - 20
Gb of Backing Store, a CD or DVD drive, keyboard, mouse and monitor. Monitors can range
from simple mono screen resolution to high quality graphics screens.

Processor speeds of PCs have increased significantly over the past 5 years. As an example, the
Pentium 4 is rated at speeds up to 2.2 GHz, which is extremely fast, especially if compared to the
processors used in PCs in the early 1990s. PCs and portable computers normally use a 32 bit
word size.

Portable computers have similar characteristics but can usually also run on batteries with a life of,
typically 2 - 6 hours. Many will have low- power versions of standard microprocessors. Some
may do without CD ROM to save space and weight. Monitors can also be colour or mono and
range to high quality high resolution display.

Both utilize memory cache to improve performance. The Pentium 4 processor provides 8 KB of
level 1 cache and 256 KB of level 2 cache.

Both provide multi-tasking, but are used in single user mode.

PCs and portable computers typically cost in the range of $2,000 to $10,000.

PCs have the following typical dimensions: processor box is between 30 to 5cm wide by 25 to
40cm deep by 10 to 15cm in height.

1/0 devices are connected via a serial (e.g. keyboard) or parallel port (e.g. printer). Typically the
number of 110 devices is limited. The recent development of the Universal Serial Port (USB) has
been added to improve speed and to enable devices to be connected while the machine is running.

MAINFRAME COMPUTERS
Mainframes are designed to run a range of application software and process a considerable
volume of transactions for a range of logged in users all at the one time i.e. use a multi-user mode
of operation. It is not uncommon for a single mainframe computer to have thousands of
simultaneous users all demanding resources from the mainframe.

A modem mainframe such as the IBM S/390 series can process at the rate of 900 MIPS (Million
Instructions Per Second) when configured with 10 microprocessors. The processors are normal
Pentium style chips that power the PCs, but, because of the mainframe's design, vastly more
RAM and cache can be used by the processors. The processors are also often used in parallel. The
device also uses a very high capacity disk configuration referred to as a 'disk farm' that can store
and access TBytes of data. They can also have a considerably greater number of peripheral
devices attached.

Mainframes cost considerably more than PCs and range in price into the millions of dollars.

163



Computer Fundamentals

Mainframes have traditionally been physically large and need to be housed in very expensive and
sophisticated computer rooms. These incorporate expensive air cooling systems to keep the
processors and disk units cool during operation.

SUPER COMPUTERS
Supercomputers are designed to run very complex programming tasks that simply require a very
large amount of processor time to execute. They are very expensive with prices in excess of
$lOm. The US Weather Bureau uses a super computer that runs at around 50,000 MIPS with 4
GBytes of primary memory and 4 TBytes of secondary memory.

NUMBER OF USERS:

MULTI-USER AND SINGLE-USER COMPUTER SYSTEMS
Computer systems can be characterised by the number of users that can access the system at any
one time. A PC is a single user system and a large computer used by a bank, for example, is a
multi-user computer. Multi-user computers need to be able to handle a large number of
simultaneous logged in users. Users can either be connected via a dumb terminal or by a PC. A
dumb terminal allows the user to view a display and to request actions via some form of interface
that is usually a keyboard, but which does not perform any processing. The important point is that
in a multi-user computer system the processing is done on the shared CPU.

Figure: 3.14

Single User System

J~-~I,__Single user CPU...
'----------

Figure: 3.15

Multiple User System Single CPU which shares
~ -_..., time between users and other

~

A single user or multi-user computer system often allows each user to execute more than one
program at anyone time. This capability is referred to as 'multi-tasking'. For example, on a PC,
you can print very long documents and continue to work on a spreadsheet at the same time.

~6~'? 3.3.4 COMPARISON AND DIFFERENT APPLICATIONS OF
COMPUTER SYSTEMS

In the following section a comparison is made between the different computer systems. When
comparing computer systems you should keep in mind these characteristics: size of primary store
(RAM), backing store size (online disk and tape capacity), range of 110 devices used, physical
size and cost, type of operation (Le. single or multi-user) and processor word length and speed.

164



Computer SCience

Personal and Portable Computers

This range of computers is designed to support the individual either in the home or at work. A
typical home or work PC is used to enable users to create, store, retrieve and print word processed
documents and to connect to the Internet to enable access to the world wide web via a browser
and to access email. However PCs are very powerful and can also perform complex financial
calculations and graphical applications.

Mainframe

The mainframe is much more costly than the PC and is able to handle a number of simultaneous
users. The size of the RAM, cache and disk capacity is also significantly greater.

Mainframes are typically used by banks, large government departments and insurance
companies. These uses are focused around handling the enormous volume of transactions
conducted on a single or distributed customer accounts database.

Super Computer

The super computer is vastly more expensive than either the mainframe or PC. It has a faster
processor configuration often using 100s of PCs in parallel. It has more RAM and cache and can
access very quickly a vast amount of data from the secondary or backing store.

Super computers are used to run single computer models of things such as a model used to predict
the next day's weather or the impact of global warming.

EXERCISE 3.8

1. Define the terms single user and multi user in terms of computer systems.

2. What advantage does multi-tasking offer users?

3. Using your school as a resource, answer the following. Draw up a list of all the different
types of computers used in the school. For each type state the following: primary store size
(RAM), backing store capacity, I/O devices used, size of device, cost, processor details
(word size, speed etc.), operating system used, multi-user or single user and brief list of
uses made of the computer.

4. Select an application run by the most expensive computer in the school and compare its
operation with the computer you normally use at school or at home. In your comparison,
make reference to the points noted in the above question in relation to the main purpose of
the computer.

5. Using the resources available to you e.g. local bank, newspapers or Internet, locate and
describe, in terms of the points listed in question 3, an application of a mainframe and
super computer.

6. Compare the operation of the mainframe and super computer from 5.

7. Compare the operating features of your school or home PC with that of either the
mainframe or super computer you described in 5.

••••• aaaaaaaaa

165



Computer Fundamentals

© IBO 3.3.5 COMPUTER SYSTEM OPERATION MODES
2004

Computer systems operation is controlled by the operating system and the desired mode of
operation. We have already seen that operating systems can be either single or multi-user with the
added capability of allowing a user to multi-task. There are number of possible modes of
operation. These are now described.

(a) Real Time Processing. Small computer systems that control the operation of VCRs and
medical equipment such as heart monitors operate in real time without intervention by
humans. These devices are embedded into a range of equipment and have all the basic
characteristics of larger computer systems, however, they are pre-programmed to act on
inputs they receive without the need to alert a human operator. The time between the initial
input and the subsequent action is thus very much reduced.

(b) Interactive On-line. This is a very common mode of operation. Most computer databases
used to record customer booking details in hotels, hospitals, airlines and theatres need to
ensure that it is not possible to double book or record the same room or seat as being
allocated to different people at the same time. The operator of the computer system can
interact with the booking program and does this by connecting directly. Thus the terms
'interactive' and 'online processing' are used to describe this mode of operation.

(c ) Batch processing. When a computer system is operated in batch mode there is a time gap
between data collection and data processing. Batch mode is used to perform a set of
processing steps on a set of data that has been collected over a period of time.

© IBo 3 3 62004 •• APPLICATIONS OF DIFFERENT MODES OF
OPERATION

Real time systems are usually found in embedded chip technology that controls things such as
industrial processes, medical equipment, automotive engines and household appliances. The
major issue is that the computer system is required to operate without human intervention.

Online interactive computer systems normally operate where it is important that the human
operators or users have direct access to the functions of the computer system. In a bank, data is
updated immediately e.g. customer bank balances are checked before a withdrawal and updated
immediately afterwards. Further examples of online systems include bank ATMs, hotel and
airline reservation systems, database systems as used by large companies to process customer
orders.

Batch operation is used by a range of computer systems. For example, a school enrolment system
may require students to hand in an enrolment form. These forms would be collected at the end of
the day and entered into the computer database at the one time. Payroll calculations and cheque
productions are often performed in batch mode. Such a set of calculations usually requires a lot of
computer time. Hence an operator could collect the data e.g. hours worked and rate of pay for
each employee and store this in a file and then set the payroll calculation process to start at
midnight by reading the file sequentially and working through each employee.

EXERCISE 3.9

1. Outline the principle characteristics of real time, online and batch processing.

2. Use the resources available to you and locate a range of computer applications and classify
them as real-time, online or batch.

166



Computer Science

3. For each of the following applications give reasons why a specific mode of operation is
likely to be more appropriate than another:

Payroll and bank cheque or direct employee bank account update processing.

Connection of a heart monitoring device to a patient.

Car computerised fuel injection system.

Library book borrowing system.

Hotel reservation system.

Pollution monitoring device and data transmission.

4. Connect each of the types of data processing to the correct system and example:

Real­
time

On-line

f-------

Batch

In this type of processing the
data is collected first and then
put into the computer to be
processed in one go. Often, in
this type of system, the data is
checked for accuracy before it
is entered into the system.

f--------------

In this type of data processing
system the computer is updated
so that the information or data
input is processed before
another input can be made. The
system must be fast enough to
ensure that the data is processed
immediately.

In this type of data processing
there is a permanent connection
between the operator terminal
and the computer system.
Usually this is because the
operator needs constant access
to the stored data to view or
update it.

An electricity company needs to send
out bills to its customers. To do this it
collects a batch of meter readings
together and enters the data into the
system. The system then checks the
customer records to see what the
previous meter reading was, calculates
the amount due and prints the bills.
Once the data has been input there is
normally no further need for operator
intervention. This type of job can be
programmed to run at night when there
is not so much use of the computer
system.

A computer system is being used to
control the flow of a drug to a hospital
patient, the drug is designed to regulate
the heart rate. If the patient's heart
stops, as well as audible and visible
alarms, a stimulant is immediately
supplied to the patient.

A certain company sells music CDs
where the customer orders over the
telephone. When the customer first
applies they are given a client number so
that the operator can identify their
records (payment records for example).
When they place an order, the operator
checks the stock records in the system to
see if that CD is available. If it is, they
confirm that the order will be shipped
immediately to the customer.

--

167



Computer Fundamentals

©IB03.3.7
2004

RELATIONSHIP BETWEEN MASTER FILE AND
TRANSACTION FILE

A master file contains the main data for a computer system or application.

A transaction file typically holds a list of the changes that need to be made to the data held in the
master file. A change is referred to as a transaction.

In an online system the transactions e.g. a bank withdrawal are used to update the master file
directly as the transaction occurs.

In a batch processing system the transactions could be collected and stored in a separate file
called a transaction file. At an appropriate time the records in the transaction file could be read
sequentially and used to update the master file. An important feature is that the transaction and
master files are both sorted so that the process can be completed in a single pass.

The relationship between the master file and transaction file is shown diagrammatically in
figure 3.14, which is shown below. In the diagram the update process is run as a batch process.
The data records are read from the transaction file one at a time and the master file record that
matches the transaction record is then accessed and updated. This sequence is repeated until the
last record in the transaction file has been read.

Figure: 3.16
.-

r Transaction
file

.-

Update
master

~

New
master

~
~

The key difference is that, in the batch processing method of operation, the data in the master file
is not necessarily up to date i.e. the transactions have been recorded and stored in a transaction
file. In an online system, the transactions are applied to the master file as the transactions occur or
are recorded.

EXERCISE 3.10
1. Define the terms 'master file' and 'transaction file'.

2. Explain the use of a master file and transaction file in relation to the payroll example given
in the previous set of questions. You may use a diagram to help explain your answer.

3. Construct an algorithm to describe the major steps involved in the above processing.

4. Explain why the algorithm works more efficiently with sorted files.

5. Explain the link between sorted files and sequential access methods (e.g. holding the files
on tape). ..It a.

168



Computer ~clence

© IBO 3.3.8 RELIABILITY OF SYSTEMS
2004

The reliability of any system is only as good as the data that is entered. The correctness of data in
a system may be described as the 'integrity' of the data. As systems become more complex and
autonomous (making key decisions on software-based rules) then mistakes can happen, with
serious consequences.

An X-ray machine that is designed to emit X-rays at a given power to be used in a cancer
treatment process can be computer controlled. If, due to a data entry error the dose of radiation is
entered wrongly, a patient could be killed or, at least, badly burned.

Closer to home, students would probably like to be sure that their grades are correctly entered
into whatever computer system the school is using. These grades may be used to write reports,
which, in tum, may be used to write university and college references. Thus an incorrect grade
could have a direct impact on the future of a student.

When the systems are actually in place and running, the consequences of hardware or other
system failures has also to be taken into account. It is not too serious if a bank mainframe
computer goes offline for a short time, the transactions can be recorded on disc or even on paper
and entered into master files later. However, as mentioned in 3.3.5, systems like air traffic control
or the monitoring of a nuclear power plant cannot fail and therefore two complete systems
operate in parallel in case one fails. In extreme cases, a triple system may even be used.

Data that is in systems needs to be protected against accidental or deliberate loss or damage.
Some examples of threats to data are:

Unauthorised users (hackers) may gain access and alter or remove data.

• Physical media (discs, tapes) may be stolen.

• The hardware may be stolen (along with fixed backing store).

• There may be fire or flood damage.

Additionally there may be threats to the security of personal and company data - this is also often
referred to as 'data protection'. In this case, particular dangers are that data may be copied,
leaving no evidence that a copy was made or that data may be accessed over networks remotely.

An important method of protecting data from unauthorised access is the use of passwords and
privileges, particularly on networked systems. Only people who have been given a logon name
and allowed to select their password can access a system or parts of a system. Privileges can be
assigned to users; low-level users can access data but not change it or make a copy to a local
floppy disc, for example. In a supermarket you may see this happt~n if a price has been incorrectly
recorded in the computer database. The check-out person usually does not have the privilege to
change prices and will therefore call a supervisor who will tap in an access code and correct the
situation.

To be effective, passwords must be of a reasonable length (usually 6 characters or more) and hard
to guess (not your partner's/child's/dog's/parakeet's name) and containing special symbols
besides alphabetic characters.

If, while you're at the supermarket, you look around carefully you may see examples of physical
security - locking computer systems in special rooms accessible only by personal equipped with
key cards or special codes.

When data is transmitted over networks it may be encrypted if especially sensitive (large financial

169



Computer Fundamentals

transfers, police data on suspects, government military secrets) so that it is very difficult (not
impossible) to decode. Encrypting data helps to ensure that, even if data is accessed, it is not
readable.A PIN number on the magnetic strip of a bank card is encrypted for this reason.

Methods used to detect and correct errors are discussed in section 3.6.

BACKUP STRATEGIES
To protect data against irreversible damage, backup copies are kept in a safe place; in most cases
they will be kept in a different building. These can be used to restore a system to the state existing
at the last backup. When did you last backup your data? Most businesses cannot function without
the data from their computer systems; therefore they must have a thorough and thoroughly tested
backup strategy.

EXERCISE 3.11
1. In weather forecasting, data is collected for input into weather models. Discuss the

implications of mistakes being made in collection or transmission of the raw data.

2. A hospital has medical records on paper and is transferring them into a new computer
system. Discuss the importance of transferring these records correctly.

3. Compare the importance of the reliability of systems that monitor patients in intensive
care with with those that that carry out stock control tasks .

... ll .

170



©IBO~ 4
2004 ~.

©IBO" 4 1
2004~· •

Computer Science

NETWORKED COMPUTER
SYSTEMS
DEFINITION OF THE TERMS LAN. WAN. CLIENT
AND SERVER

Networks allow computers and peripheral devices to communicate. A network connection is
usually provided by means of a connection device, e.g. a network card, and a facility to enable
transmission, e.g. cable or microwave. Transmission is facilitated by the use of a send and receive
protocol that is understood by the communicating devices.

The term 'server' refers to the software and computer that provides the services that are available
via the network. For example, a file server provides the ability to store and distribute files to users
on the network. An email server would manage the flow of email in and out of the network, check
that an email address is valid and allow users to access their email.

The term 'client' refers to the software application that requests actions from a server. For
example, to use email a user needs to run the email client that allows the user to access their email
on the email server. The email client will allow the user to manage their email, e.g. create and
send a new piece of email. However, without the email server the email wiII not actually be sent.

There are essentially two forms of network: Local area network and wide area network.

These two terms are now defined.

LOCAL AREA NETWORK (LAN)
A local area network is a term used to refer to a network of computers and peripherals that are
directly linked via cable or microwave transmission within a single area. Typically the area is that
of a building or office. Most schools operate LANs. A LAN is typically made up of a central
server computer that stores the shared application software and data. Individual PCs and/or
workstations and dumb terminals are then linked to the server via a network card and
transmission medium. The most common transmission medium is some form of cable.

The advantage offered by a LAN is the ability to share peripheral devices such as printers. Data
from shared files can also be accessed. Application software can also be loaded from the file
server onto a Pc. The normal mode of operation is to run the required software from the PC's
hard disk to avoid congestion. In the school it means, for example, that a student can access their
data files and email from any connected workstation. This increases flexibility.

The most common mode of operation is that of client/server. The server is the central node in the
network and coordinates and supplies services to the clients in the network. To enable this type of
operation the server runs a network operating system that enables clients to login and use the
facilities on the network. A person wishing to access the LAN needs to first login using a PC or
workstation that has loaded the client software. The client software provides the link to the
network operating system and allows the user to then access the network services e.g. shared
printing.

LANs can connect to other LANs and to wide area networks. This is done by using a device
commonly referred to as a GATEWAY. Gateways allow access to services such as the Internet or
to services available on another LAN.

171



Computer Fundamentals

WIDER AREA NETW'ORK (WAN)
Wide area networks allow computing devices to connect to a networked computer facility from
remote location. The Internet is an example of a WAN. Many large organisations that are located
over a wide geographical area also utilize WANs. The diagram below shows that a WAN can be
made from a range of different computer facilities and utilises a range of communication media.

The main features and differences between a LAN and a WAN are shown in figure 2.15 below. A
LAN allows local connection and sharing of resources within a confined area e.g. an office block,
whereas a WAN allows wide spread connection between users over a much larger geographic
area. Many LANs are themselves connected to WANs and allow local users to operate as if they
were on a private traditional LAN, but to also access the facilities of a WAN.

A LAN (e.g. school network) "PC

printer

\
Connections

typically cable.

PC

Figure: 3.17

PC
Server

Figure 2.16

A WAN (e.g. the internet)

Connection methods
shown are examples
only.

Optical cable

EXERCISE 3.12

1. Define the term client.

2. Define the term server.

3. Define the term LAN.

4. Define the term WAN.

172



DIFFERENT NETWORK 'IOPOLOGIES

Computer Science

5. Using your school as a resource describe the purpose of the school's LAN.

6. If your school is connected to a WAN, describe how this is done and the advantages this
connection provides to the users of the school's network.

© IB0 3 4:22004 • •

Networks can be structured or configured in a variety of ways. A specific network arrangement is
said to be the network's topology. There are basically four main topologies as shown in figure
3.16. Each of these is now briefly discussed.

Figure: 3.18 . Network topologies

Bus network topology Key

o Node
_Hub
(II) Computer

Star network topology

Ring network topology

Hybrid

Tree network topology
(Hierarchical)

Star:

Bus:

Ol------II---<ID---joonnoctn'devi,e~

a star network requires each node of a network to be connected to the central
file server or host computer via a single cable. To enable the connection to
take place a piece of equipment called a 'hub' is used. Each cable leading
from a node is plugged into the hub and a single cable is used to link the hub
to the file server node. Thus each node has its own direct connection but
congestion can occur between the hub and the file server. The file server
shares out its time between the nodes that demand service.

this is a very simple topology where a single cable is used to link all the
nodes. The bus cable is therefore shared by all the nodes and can become
congested. Data is transmitted with a node number and each node takes

173



Computer Fundamentals

from the data bus data that belongs to it or passes the data on. Bus cables
must be tenninated and do not return signals to the server.

The following types are not mentioned in the subject guide, but are included for the sake of
completeness.

Ring: this is used to link computers of equal importance. For example a bank may
use four mainframe computers. To enable these to talk to one another, the
four could be linked by a common cable in a circle. In such a setup each
computer can perfonn processing and can also share the resources of the
other computers. Such a setup allows decentralised processing.

Hierarchical: in a hierarchical topology one main computer is said to be the 'main
computer' and there can be other computers linked to this computer, which
in tum can be host to other smaller networks. Such a setup allows a
centralised approach but allows different sections of an organisation to have
their own network facility.

Tenninal network: provides for centralised control of processing and access but does not allow
for any processing to take place at the user's end.

Peer-to-peer: allows for nodes to act as both servers and clients.

Client/server: provides for the centralised control of the network via a single main
computer. Thus only one computer needs to be able to perfonn the tasks of a
server. Client server setups also transfer much of the processing to the
server in much the same way as traditional multi-user operating systems
operated for dedicated terminal users. A database client, on receiving a
request to list all records located in a particular town, would return the
required sub-list from the entire database. Traditional file servers would
have sent the entire file and the processing would then be done on the user's
PC.

We can also link different networks such as a star or ring into a single hybrid network.

HARDWARE REQUIRED IN NETWORKING© IB0 3 4 32004 • •

Network Card:

Cable:

Hub:

allows a device to be connected to a network. Can be an interface card that
is connected via a communications port or be an integrated part of the
device. With the advent of wireless LAN technology, the connection need
not be via a physical cable.

typically networks are implemented by the use of some fonn of cable.
However, the advent of wireless technology is enabling networks to be
implemented that require far less use of physical transmission media.

there many types of hubs. The main function of a hub is to allow different
sections of a network to be connected. It is common in a network to split a
communications channel into several smaller parts. Thus server devices may
in fact share a single channel. The device that connects the different
segments and passes the data onto the appropriate channel is termed a Hub.
A simple hub will simply pass on data packets from the one set of input
channels onto the entire set of output channels. A switched hub will pass the
data packet onto the appropriate destination channel only.

174



Router:

Switch:

Gateway:

Computer Science

a router can be used to direct LAN traffic from one LAN or part of a LAN to
another. A router is able to identify the proper destination of data, unlike a
hub.

A switch i~ used in hybrid networks to connect the different segments and
pass packets of data between them (this is explained in more detail in
section 3.4.4).

a device that is used to connect users of a LAN to another network, which
uses different protocols. The best example is to consider how a school LAN
is able to allow a user (a student or teacher) to connect to the Internet. This
is done via the use of a gateway device that allows users to connect to the
Internet via the ISP (Internet Service Provider).

~~~2 3.4.4 PACKETS, PROTOCOLS, INTEGRITY AND SECURITY
OF DATA

When discussing LANs and WANs we distinguished them on the basis of distance. It is also true
that different technologies are usually used: LANs typically use broadcast techniques where
every computer listens on a common cable, whereas WANs use switching techniques since direct
connections are not practical over large distances.

There are two main types of switching network (circuit switched and packet switched) of which,
only packet switching is mentioned in the subject guide.

In a packet-switching network, as you probably guessed, data is sent in small, discrete chunks
called 'packets' .

A packet typically contains:

• information about its origin.

• information about its destination.

• information about where in the sequence of packets it belongs.

• information about how long it has been travelling.

Because packets are transmitted by different computer systems outside the control of both the
sender and receiver of the data, an internationally agreed set of rules is needed, known as
standard protocols.

PROTOCOLS
To enable two devices to exchange digital signals it is important that both understand what is
being sent and received. This is done by adopting a set of rules known as a protocol - an agreed­
upon format for transmitting data between two devices. The protocol determines the following:

• The type of error checking to be used.

Data compression method, if any.

• How the sending device will indicate that it has finished sending a message.

• How the receiving device will indicate that it has received a message.

There are a variety of standard protocols from which programmers can choose.

175

Computer Fundamentals

Each has particular advantages and disadvantages. For example, some are simpler than others,
others are more reliable, and yet others are faster.

From a user's point of view, the most relevant aspect about protocols is that the computer or
device must support the right ones if it is to communicate with other computers.

Data integrity is concerned with making sure that what is received is what was transmitted; data
security is concerned with preventing unauthorised access to network data, both of these topics
are discussed further in sections 3.4.7 and 3.4.8 respectively.

~6~.? 3.4.5 SOFTWARE INVOLVED IN NETWORKING
In order for a PC to connect to the Internet from home it is necessary to have loaded system
software that enables the PC to receive and transmit data via the modem, which is in tum
connected to a phone line.

In order for a PC to connect to a LAN it needs to have the appropriate communications client
software loaded.

Communications software deals with protocols and data security, both for LANs and WANs and
handles the need for both integrity and security of data as previously discussed.

~6~.? 3.4.6 DATA INTEGRITY IN TRANSMISSION
This is generally known as 'noise'.

Data that is transmitted over communication lines is also subject to interference which can alter
the nature of the data represented. Parity checking is used to check on such errors and, if an error
is detected the network, will try to recover the data, often by requesting a resend of the data
packets.

PARITY CHECKING
As mentioned above data, can be altered during transmission either within the computer or
between computers. Prevention of such errors is related to the robustness of the design of the
computer system and the environment within which the computer is used. However, it is possible
to set up methods to detect if an error has occurred after a group of bits have been moved from
one location to another. This is done by using a parity check.

Figure 3.8 shows the working of a parity check in diagrammatic form. Let's say we moved a byte

1010 1100 from location A to B and in the process the 2nd bit was flipped ie 1110 1100 was
received at B. How could this be picked up. One way is to append a parity bit and check this
matches what is expected.

There are two forms: odd and even parity.

In odd parity we append a 1 as the parity bit only if it makes the number of bits set to 1 odd in
total.

In even parity we append a 1 as the parity bit only if it makes the number of bits set to 1 even in
total.

In our example lets assume we are using even parity. At location A we have 1010 1100.

We note that there is even number of 1s thus we add a parity bit of 0 ie there are now still 4 bits
set to 1.

176

Computer Science

We therefore send 1010 1100 and a parity bit of O.

When this data is received it has been changed to 1110 1100 and parity bit of O. We now check
that the parity bit makes sense. There are now 5 bits set to 1, thus our parity bit should set to 1 to
make 6 bits set to 1 i.e. and even value.

As our re-calculation of the parity indicates an inconsistency we report an error in transmission.

To this point we have concentrated on checking to ensure that the integrity of the data is
preserved. We need also to be concerned about the security of data. By this we mean protecting
the data against unauthorised access, which might result in a change being made, or by preventing
unauthorised interception. We do this by ensuring that users are authenticated to login and access
the data via a login name and password and by encrypting data when it is transmitted.

CHECK SUMS (BLOCK CHARACTER CHECKS)
Check sums are sums produced from set of binary data by the application of an algorithm that is
applied to the bits in the binary data.

In a block character check (one type of check sum), successive bytes are added together and the
sum of these is transmitted. A fixed number of bytes would be followed by the block character
check. It could be necessary to truncate the BCC since it might exceed one byte of storage.

EXAMPLE:

Decimal value 0~~~[~~

Character 08~~[BCCIQJ
t

BCCevery
4 bytes

In this example, a maximum value of 255 can be held in 1 byte.

The sum is used to check that the binary data matches what is expected. The format of the check
sum is part of the protocol. Check sums are used to check network data transfer i.e. a check sum
may be included with each data packet and, on receipt, the check sum is recalculated and checked
against the transmitted check sum to detect errors. If there is an error, re-transmission is usually
requested.

Check sums can also be applied to other forms of binary data such as graphics files or other
digital images such as finger prints or music files. In the case of the finger print, the check sum
would be unique. An algorithm is applied to the bits that make up the file and appended to the
data bits. This check sum can be checked after the file is copied or transmitted. For example, if a
virus had been incorporated into the file the check sum would be wrong - unless of course the
virus was clever!

~6g23.4.7 DATA SECURITY
As mentioned above, data security is concerned with preventing unauthorised access and students
are expected to be able to explain the difference between security and integrity of data.

Data stored on a network is vulnerable since it is potentially open to view by any computer
connected to the network, however far away it might be.

177

Computer Fundamentals

User Login

In your school you probably access a network and/or use the Internet at home. In both cases you
will normally be required to enter a valid user name and valid password. The password is the
main form of network security. Passwords should be set sensibly and changed at reasonable time
intervals. Passwords should not be easily associated with the user e.g. name, initials, date of birth,
name of suburb, pet's name or parent's name etc. The password should be a random collection of
characters including letters and digits. A copy should be stored in a safe place and not given to
other people.

Passwords are stored on the computer but are stored in encrypted format so that if they are located
they cannot be read.

Data encryption

The other major security problem is the interception of data transmissions by an unauthorised
third party. Data is typically enrc:ypted when transmitted. This means that the data is scrambled at
transmit time i.e. encrypted and then de-encrypted when it is received. If the data transmission is
intercepted it cannot be de-encrypted without the use of an encryption key.

Permissions

As well as passwords to enable users to login, each user also has a set of permissions associated
with their logon name or group. Some users, administrators or super-users, can look in any data
file, change user passwords and delete any file on the system. Ordinary users can only access their
own files and use specified resources such as printers and CD burners.

~6~2 3.4.8 THE NEED FOR SPEED IN DATA TRANSMISSION
As you probably appreciate, the internet and other networks can be busy. Therefore, we want to
transmit data quickly and efficiently. To see how data transmission speed can be improved, we
briefly examine the compression of graphical data and the common formats: JPEG and EMP.

'lRANSMITTING GRAPHICAL DATA
As we saw earlier, data is split into packets and transferred across the internet or other networks.
Each packet typically can find its own route through the network (sometimes packets are all sent
on the same route - known as a virtual circuit) - strictly speaking, this type of packet is known
as a datagram.

The sending of information with all the attached data is obviously time-consuming since they
have to be assembled, routed then dis-assembled at the destination. If the original file can be
compressed in some way then the speed of transmission (of the whole file) can be improved. This
is especially applicable to media files such as graphics, sound and movies (films). The IE Subject
guide specifically mentions the 13MP and JPEG graphical formats.

178

Computer Science

Bitmaps (BMP)

A photograph or oil painting is an analog representation (section 3.5.1) and, as such, can't be
stored in the computer as a set of l's and O's. To make this conversion, the original picture is
sampled, effectively represented by a series of rectangular picture elements or pixels:

Eaxh pixel can only be used to represent an individual
colour, it can't be half one colour and half another. As with
all conversion from analog to digital, some approximation
or inaccuracy is introduced by the conversion process.
Clearly, the finer the grid of pixels, the more accurately the
original can be reproduced.

Each pixel is given a unique code corresponding to a
particular colour, a black and white image could be
represented by a 0 and a 1 (see section 3.5.1). For three
colours, 2 bits would be required and so on.

Thus any picture can be reduced to a set of binary number codes:

001 001 000 001 001 001 001 001 001 001

001 000 000 000 111 III 111 001 001 001

001 001 001 001 III III III 001 001 001

001 001 001 001 111 III III 001 001 001

010 010 010 010 III 110 111 010 010 010

010 010 010 010 010 110 010 010 010 010

010 010 010 010 010 110 010 010 010 010

010 010 010 010 010 110 010 010 010 010

101 101 101 101 101 110 101 101 101 101

101 101 101 101 101 101 101 101 101 101

179

Computer Fundamentals

code colour

001 sky blue

000 white

111 green

110 brown

010 dark blue

101 bright yellow

This is a bitmap. In order to transmit this picture, without further loss of detail, every binary code
must be transmitted.

Compression of Bitmaps (JPEG)

The requirement to transmit every bit does not mean that we have to take every grid cell (pixel)
and transmit its binary code. If we look more closely at the 'picture' in the last section we will
notice that certain blocks of the same colour occur together. We could describe a block by two
numbers, for example:

A three digit colour code

A number representing how many cells of that colour occur (including any 'wrap-around' from
the last column)

This the first part of the picture could be: 001 2000 1 001 8, or if we prefer to put it all in binary
(with an extra 0 to convert 3 colour codes to 4-colour codes):

0001 0010 0000 0001 0001 1000

or in three bytes:

00010010 00000001 00011000

EXERCISE 3.13

1. How many bytes of data are transmitted with compression and without?

2. What are the limitations of using 4 bits for the run number? How can they be overcome?

3. Is there any particular type of data that this method would be good for or bad for in terms
of the compressed file size?

4. Convert the picture to a series of hexadecimal digits .

• • 11 •••••••••••

The above technique (run-length encoding, used in GIF files) is said to be 'lossless' since all the
original data is preserved and the image can be restored completely. As you can probably see, the
technique would not achieve much compression of photographs or oil paintings.

180

Computer Science

JPEG compression works by assigning very similar colours the same value, perhaps a sky scene
has a lot of very similar shades of blue. Maybe few people will notice if you assign them all the
same colour code. Part of the original information is then lost by this conversion (thus it is known
as 'lossy' compression).

VECTOR GRAPHICS
The Subject guide doesn't mention these, but we'll include them for the sake of completeness.

Vector graphics are the things we use in our good old drawing programs like Fireworks and Corel
Draw. Even Word has vector graphics. Each graphic, like a circle can be described by a
mathematical equation - x, y coordinates and radius ought to be enough to describe a circle.
Other attributes like line thickness, colour, fill pattern, line style etc. can also be stored as
numerical information.

One great advantage of this method is that objects can be scaled up without loss, unlike bitmaps.
Another is that vector graphics files are generally smaller in size than their bitmap counterparts.

A disadvantage of vector graphics is that they can't be used for complex images like photographs.

There is no generally agreed standard for the transmission of vector graphics to internet browsers
although, if you have a product such as Macromedia Flash Player installed, you can download
and play animated vector graphics image files.

~6~.?3.4.9 DISCUSS APPLICATIONS AND IMPLICATIONS OF
NETWORKING FOR ORGANISATION

LANs and WANs provide a range of productivity applications. The above example has introduced
some of these. In general terms the range of productivity applications include the following.

Improved Internal communications:

The ability to utilize email and messaging systems allows employees of organisations to
communicate without need to always rely on person to person contact via either
conversation or leaving notes.

Email provides the ability to send messages to individuals or group of individuals. Larger
documents can also be attached and distributed using mailing lists. This reduces the need
for photocopying and saves time and effort.

External communications

By connecting to a WAN, employees can email other employees in geographically
dispersed locations. To the employees concerned it appears as if they are all in the same
office.

Conferencing

As bandwidth improves the ability to communicate using video conferencing will make it
possible to hold face to face meetings without the need to be physically present.

181

Computer Fundamentals

Distributed processing

Many applications are required to share data and this has been traditionally been done by
sharing access to a centralised database i.e. one file system. However it is possible to set
up local files that also have the ability to act as one centralised file system. The users see
no difference.

An organisation may also wish to break up the work over a number of decentralised
processing centres.

The implications of networking in an organisation revolve around the need to ensure security of
access and to ensure that employees' work practices make sensible use of the network without the
organisation resorting to invasive monitoring processes which have the potential to raise privacy
issues related to employees' rights.

BENEFITS OF NETWORKING FOR USERS
Networks provide a number of benefits for users. In summary they are:

Access to a variety of shared internal resources, e.g. printing, thus reducing the cost because
expensive peripheral equipment such as colour laser printers need not be duplicated but
simply connected to the LAN.

• Access to shared programs, e.g. an order entry or invoice system.

• Access to shared data.

Users can store their personal private data centrally and can therefore access it from any
device. If the network access is available they can access the data from external sources e.g.
from home or whilst away from the office.

• Access to external computer systems e.g. world wide web and email via the Internet. The
access to email is very convenient and therefore improves communications and helps the
organisation achieve its objectives.

A comparison of the general benefits and limitations is provided in the table below.

LAN WAN

Lower cost to set up, suitable for small
More expensive hardware required, more
suitable for large a organization operating

business/organizations.
over a large area (e.g. a country).

Limited range of data transfer, expense
Security depends on communications
system. Telephone system is cheap and

rises rapidly because of fixed cabling costs
insecure, dedicated lines are very

(your locality).
expensive, satellite links exorbitant.

Data processing can be centralised,
No external communications system avoiding the need for more than one
required. mainframe installation with attendant

maintenance costs.

The essential limitation of a LAN is that unless it is connected to a WAN you will not be able to
access the information sources available via technologies such as the world wide web or world

182

Computer Science

wide email. Communications will be restricted to traditional forms such as the phone. But, a
LAN is secure from external access and it provides a reasonably cost effective way to enable data
and resources to be shared.

A WAN provides access to external information sources and to the growing world of electronic
communications. But this comes at a cost to the organisation in terms of additional infrastructure
and access costs. A WAN also implies that the organisation needs to be aware that security is an
issue, either from people attempting to access the organisations computer system from outside or
by intercepting transmission from the organisation to the WAN.

EXAMPLE:
An organisation called POTS sells cooking ware. The organisation currently operates a LAN at its
headquarters in Hong Kong and is considering allowing the world wide set of sales
representatives to be able to access an online catalogue and sales administration system. It is
proposed to enable the current catalogue and sales administration system to be accessible via a
secure gateway via the Internet. The sales staff who are not direct employees of the company but
who act as agents will have a login and password that will allow them to access only that part of
the system they need. Additionally, the sales agents will be able to communicate via email to the
various service representatives located in Hong Kong instead of by letter or phone.

What are the benefits and limitations of such a proposal?

The benefits relate to the increased level of communication that will be possible between the
agents and the service employees. From this you would expect problems to be resolved more
quickly, which in tum should mean more satisfied customers and therefore increased business.
The fact that the sales system can be accessed online should also streamline operations and may
lead to cost savings.

The limitations or disadvantages of the proposal relate to the costs associated with the provision
of the new online service. Costs will be incurred by the company to pay for an Internet
connection, new software, increased security and possible additional staff or extensive training of
existing staff to administer the new system. Security will need to be monitored to ensure that no
illegal access occurs to the sales system.

Organisations have also found that providing online Internet access and email access to
employees has resulted in employees using the access for an increasing amount of non-work
related activities. This in tum has lead many employers to consider increasing electronic
surveillance to deter this type of activity.

EXERCISE 3.13

1. Define the term 'network topology'.

2. Explain what is meant by describing a network as having a 'star topology'

3. Explain what is meant by describing a network as having a 'ring topology'

4. Explain what is meant by describing a network as having a 'bus topology'

5. Explain what is meant by a hybrid network topology and list the advantages that such a
topology might provide

6. Explain the functions of the following hardware associated with networks: hub, node and
router.

183

Computer Fundamentals

7. Outline the characteristics of the following transmission media: cable, microwave and
fibre optics.

8. What is meant by the teon network protocol?

9. Why are passwords a vital security measure on a network?

10. Why is data encyption used in data transmission?

11. How is security typically handled on a network?

12. Explain why communication software is required.

13. Describe the network topology used in your school and the way the network functions.

14. Suggest an alternative topology for your school's network and discuss the advantages and/
or disadvantages of your proposal.

15. Student Activity. Encryption is a key issue for Computer Science. Use the Internet or some
other appropriate source to research the area of data encryption. During your research try
to uncover two or three significant areas of computer science research related to the area.
(Hint: network security and encryption can often provide fertile ground upon which to
write the extended essay)

16. In terms of your school, summarise the benefits the students and staff gain from having a
network.

17. Discuss the difference in the benefits derived by the use of the network by the school's
administrative staff as compared to the students.

18. In general tenus what advantages does email offer the organisation?

19. Define the tenu 'distributed processing' and explain why this type of processing may
provide advantages to an organisation.

20. In general tenus compare: the benefits of a WAN with a LAN

21. Consider your school and its connection to the Internet, which is itself a reasonably large
WAN! What advantages does the school receive by being connected to the WAN and who
gains most?

22. What limitations or disadvantages are associated with the school being connected to the
WAN?

23. Activity: Using your local area or other resources locate, an organisation that uses a LAN
and/or a WAN and discuss the benefits and limitations and implications of the use of the
network.

24. Investigate some aspects of the ftp http and tcp/ip protocols. List 4 items which are part of
a protocol.

25. Write a Java program, with a method, that takes a string message and adds BCCs every 4
characters. Provide another method to restore the original string and verify that it is
correct. This is an exercise that can be extended as further programming skills are
developed. For example, a message can be stored in a text file and a 'filter' method used to
introduce random errors that student's programs must find .

•• Jt •• a .. a aaaa

184

Computer Science

© lEO 3.4.10 WEB BROWSERS AND SEARCH ENGINES
2004

Functions of a web browser.

A web browser such as Explorer or Netscape provides a range of functions. These include:

Ability to access hypertext documents by using the Universal Resource Locator address.

Ability to scroll up and down the desired document.

Ability to store a history of sites visited and to be able to move forward and back through
this history. You can also return to home page and to refresh a page i.e. reload the page.

Ability to print desired pages.

Ability to configure the browser. There are a number of options that can be set. For
instance you can ask the browser to cache the most recently accessed pages. This speeds
up the operation of moving back through your history. You can also set your desired home
web address.

You can display the HTML code.

You can save the page onto your local computer.

You can bookmark your most popular pages.

You can configure various security options, including encryption.

FUNCTIONS OF A SEARCH ENGINE
The world wide web functions because each HTML page can be catalogued by a search engine.
This can be done in a number of ways. For example by the use of HTML tags to act like keywords
or by notifying search engines of your document. Search engines can also open documents and
look for key words so that the document can be classified.

Search engines effectively work by searching large indexes using the key words that you enter.
Many apply boolean logic to enable searches to be made more efficient.

The basic functions of a search engine can be summarised as:

Looking across the world wide web for new documents.

Cataloging these documents using keywords to build and update the search database.

Provide a query/search facility for users to enter search text, which is then used to search
the database and report back to the user the results of the search.

EXERCISE 3.14

1. Using the list of browser functions above summarise the functions provided by the
browser that you use to access the world wide web.

2. What security functions does your browser provide?

3. What customising features does your browser provide?

4. Use the Internet to locate a site that reviews the available search engines and the
advantages offered by each.

aaa.aaaaaaaaaa

185

Computer Fundamentals

~6~.?3.5 DATA REPRESENTATION
~6~~3.5.1 BINARY DATA REPRESENTATION

Computers traditionally represent data using a two-state voltage system. One voltage level
represents the first state and this is represented by the digit 0, the other voltage level represents the
second state and this is represented by the digit 1. Because there are two states, we refer to this as
a binary system. Such a binary system allows the use of sequences of Is and Os to represent data
values.

RAM is used to store these binary sequences. It does this by using lower fixed voltage level (V) to
represent a°and to represent a 1 a small further fixed voltage level increment is added (e). Thus
main or primary memory (RAM) requires electrical power to maintain the state of memory. For
this reason primary memory is sometimes referred to as volatile memory.

Each 1 or a °is referred to as a BIT and these are grouped together into 8 bits to form a BYTE.

Because computers are binary systems the binary or base two number system is used to represent
numeric values such as Integers and Real numbers.

The binary number system is referred to as base 2. It therefore uses only two digits 1 and 0.

A simple relationship exists between the number of bits used to represent something and the
possible number of different or distinct representations.

With two(2) bits it is possible to represent the following four (4) patterns:

00,01, 10 or 11

With three (3) bits it is possible to represent the following eight (8) patterns:

000,001,010,011,100,101,110,111

The relationship can be stated mathematically as follows.

The number ofdistinct combinations ofn-bits is given by 2n.

We can confirm this by applying the formula to the example above.

n =2 gives 22 =2

n =3 gives 23 =8

APPLICATION OF THIS RELATIONSHIP
Pixel Colour Intensity

Let us assume that the Red-Blue-Green (RGB) colour represented by a pixel on a screen is
calculated by allowing 4 bits for each colour intensity i.e. 4 for red, 4 for blue and 4 for green.

Thus you would be able to represent 24 =16 levels of colour intensity for each of red, blue and
green. This would therefore allow 16 * 16 * 16 =4096 different colours, which is not very many.

186

Computer Science

Memory Address Size

An 8 bit bytes allows 28 =256 different patterns of Is and Os. Using the relationship of 2n we can
therefore work out how many different memory locations we can have if we use 16 bit, 32 bit and
64 bit memory addresses.

using 16 bit memory we can address 216

using 32 bit memory we can address 232

using 64 bit memory we can address 264

EXERCISE 3.15

1. State the relationship between the number of bits and the number of patterns of 1s and Os
that can be represented. What is crucially significant about the relationship?

4. With respect to the colour intensity of a pixel, what impact would there be on the number
of different colours possible if the number of bits allocated to each colour was increased to
8 and then to 10? What implication does this have for RAM when storing an image?

S. In the above example related to memory size, the final calculations were not completed.
Complete them now and use suitable approximations and prefixs.

aaaaaaa .

©lB03 5:Z
2004 •• NEED FOR STANDARD FORMATS FOR DOCUMENTS

AND GRAPHICS
In order that documents and graphics can be interchanged between computer systems it is
important that standard formats exist.

Several formats for storing data have been developed for different applications. For example your
word processor stores data in a form that other word processors cannot access, unless they have a
conversion utility. Because the ability to use different formats in different programs (e.g.
photographs in a word processor or graphics in a spreadsheet) is important to users, different
software makers have, over the years, agreed on standard formats for exchanging this kind of
data. Common examples include:

• gif files for diagrams on web pages.

• jpeg for photographs in word processor documents, graphics programs or web pages.

• wav for sound files in operating systems or web pages.

EXERCISE 3.16

1. Outline why it is necessary to have standard formats for storing documents and graphics
files.

2. Assume that a graphics file is displayed using a resolution of 120 pixels wide by 300
pixels high and 8 bits per pixel. Calculate the size of the graphic in terms of bits and then
convert this to bytes.

187

Computer Fundamentals

3. What implication is there for the size of the above graphic if we reduced the width by
half?

4. Using the original dimensions of the graphic, what would have to be done to reduce the
total size of the graphic by 50% so as to retain the direct proportions of the graphic?

5. What implications, if any, are there if the graphics file used 8 bits to represent colours and
we wished to convert it to another format that used 10 bits?

6. What implications are there if we chose to convert a graphics file which used 16 bits to
represent colour to a graphics format that used only 6 bits to represent colour?

• • •• • • a a a a a a a a a
ASCII is the acronym for the 'American Standard Code for Information Interchange'.
Pronounced ask-ee, ASCII is a code for representing English characters as numbers, with each
letter assigned a number from 0 to 127. For example, the ASCII code for uppercase M is 77. Most
computers use ASCII codes to represent text, which makes it possible to transfer data from one
computer to another.

Text files stored in ASCII format are sometimes called 'ASCII files'. Text editors and word
processors are usually capable of storing data in ASCII format, although ASCII format is not
always the default storage format. Most data files, particularly if they contain numeric data, are
not stored in ASCII format. Executable programs are never stored in ASCII format.

The standard ASCII character set uses just 7 bits for each character. There are several larger
extended ASCII character sets that use 8 bits, which gives them 128 additional characters. The
extra characters are used to represent non-English characters, graphics symbols, and
mathematical symbols. Several companies and organizations have proposed extensions for these
128 characters. The DOS operating system uses a superset of ASCII called extended ASCII or
high ASCII. A more universal standard is the ISO Latin 1 set of characters, which is used by
many operating systems, as well as Web browsers.

STANDARD ASCII (ALPHANUMERIC CHARACTERS)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX Ear ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DCI DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP # $ % & * +

3 0 2 3 4 5 6 7 8 9 < > ?

4 @ A B C D E F G H J K L M N 0

5 P Q R S T U V W x Y Z \ A

6 a b c d e f g h k ill n 0

7 P q r s u v w x y z { DEL

188

Computer Science

More detailed descriptions of the first two lines of characters are:
NUL (null)
STX (start of text)
EOT (end of transmission)
ACK (acknowledge)
BS (backspace)
LF (NL line feed, new line)
FF (form feed)
SO (shift out)
DLE (data link escape)
DC2 (device control 2)
DC4 (device control 4)
SYN (synchronous idle)
CAN (cancel)
SUB (substitute)
FS (file separator)
RS (record separator)

SOH (start of heading)
ETX (end of text)
ENQ (enquiry)
BEL (bell)
TAB (horizontal tab)
VT (vertical tab)
CR (carriage return)
SI (shift in)
DCl (device control 1)
DC3 (device control 3)
NAK (negative acknowledge)
ETB (end of transmission block)
EM (end of medium)
ESC (escape)
GS (group separator)
US (unit separator)

Thus, for example, Q is coded as 51 and m as 6D.

EXERCISE 3.17

1. Convert your surname to a binary sequence using the ASCll code for each of the letters in
your surname.

2. Convert the binary sequence to a HEX string.

3. Use the Internet to look up the details about the 16 bit character code know as UNICODE.

4. Why is it possible in a programming language such as C or Java to assign a letter to a char
and then assign the char value to a an integer variable?

5. What does this algorithm do:

char x = 's'
intp
p=x
p=p+2
x=p
Outputp

Explain the result.

6. Use the Internet or another suitable resource and research what is meant by the term
'extended ASCII code' i.e. how many bits are used and what this allows.

7. Use the Internet or another suitable resource and research what is meant by the term
'UNICODE'. How many bits are used in UNICODE systems and what implication does
this have?

Note: Java uses the UNICODE system and ASCII remains as a subset for compatibility
with other devices.

189

Computer Fundamentals

©IB03.5.3
2004

EXPRESS NUMBERS IN DECIMAL, BINARY AND
HEXADECIMAL

The decimal number system uses a base of 10 to determine the place values. The place values
increase by powers often as we move from right to left i.e. 10°, 10 1,102,103 etc. The digits for
the base ten system range from 0 to 9. Note the maximum digit is always one less than the base.
Thus the range of digits for different bases is always 0 to N-l, where N represents the base.

The table below shows the first four place values in the decimal system. We can use it to show
what is meant by a particular decimal representation by multiplying the digit by the
corresponding place value and adding these up. For example, what quantity is represented by
3432 base 10 or 34321O? Note when showing the base it is subscripted and, if this is omitted, the

number is assumed to be base 10.

103 102 101 10°

1000 100 10 I

3 4 3 2

Thus the value 3432 represents:

3 lots of 1000 =3000 +

4 Jots of 100

3 lots of 10

2 lots of 1

400 +

30 +

2

When these are all added together we get 3432 base 10 i.e. three thousand four hundred and thirty
two.

When representing fractional quantities to the right of the decimal point, the place values of the
denominator are powers of 10 that start at 1 and increase by 1 as you move from left to right. This

means the place values are (10-1) i.e. ~I = 0.10, (10-2), ~2 = 0.01, (10-3), ~ = 0.001 etc.
10 10 10"

These are referred to as one tenth, one hundredth, one thousandth etc.

Thus the fraction 0.123 represents the following:

1 lot of tenths

2 lots of hundredths

3 lots of thousandths

= 1 xO.lO

=2 X 0.01

=3 X 0.001

=

=

=

0.10 +

0.02+

0.003

When these are added together we get the value 0.123 base 10, which is read one hundred and
twenty three thousandths.

190

Computer Science

THE BINARY NUMBER SYSTEM
The binary number system uses a base of 2 and thus only allows the digits 0 and 1. The place

values are thus powers of2 starting atO i.e. 2°= 1,21= 2, 22=4, 23= 8,24= 16 etc. In the fraction
part, the place values are determined using a denominator of powers of 2 starting at 1 i.e.

~1'~' ~3' ~4 etc. These values can be represented using negative indices as 2-1, 2-2,2-3 etc.
2 22 2 2

Representing binary numbers

The table below shows how to convert from a binary value to a decimal integer equivalent. The
table can also be used to convert from decimal to binary.

27 26 25 24 23 22 21 2°

128 64 32 16 8 4 2 1

1 1 0 I 1

The first row shows how the place value is determined. The second row shows the quantity
represented in decimal form. The third row shows the binary sequence 11011 2 ,

Thus to convert 11011 2 to decimal we add up the place values where a I appears.

lxl + Ix2+0x4+ lx8+ Ix16= 1 +2+0+8+ 16=2710,

It should be noted that computer memory is usually displayed as a series of Is and Os. In respect
of the ASCII code each character's representation also has an integer value equivalent. This is
used to convert alphabetic characters from lower to upper case by adding a fixed integer value to
the character's integer value. Most programming languages allow direct conversion from
character to integer by assignment.

HEXADECIMAL (BASE 16)
The hexadecimal system uses base 16 and thus allows digits 0 to 9 and uses letters to represent
the quantities 10 =A, 11 = B, 12 = C, 13 = D, 14 = E, 15 = F. There are 16 digits in all. The place
values are powers of 16 starting with 0 and increasing by one as you move from right to left.

The table below shows how to read hexadecimal numbers.

163 162 161 16°

4096 256 16 1

1 D F 3

The relationship between binary and hexadecimal numbers

The hexadecimal number IDF3 16 shown in the third column can be converted to its decimal

equivalent by multiplying the place digit by its corresponding place value.

The calculation is shown below.

I x 4096 + D x 256 + F x 16 + 3 xl

191

Computer Fundamentals

We now substitute the decimal values for D and F i.e. 13 and 15. We now have.

I x 4096 + 13 x 256 + 15 x 16 + 3 xl =4096 + 3328 + 240 + 3 =7667 10,

EXERCISE 3.18
Using tables of place values, convert the following to binary or hexadecimal.

1. Convert 123 10 to its binary and hexadecimal equivalents.

2. Convert 1011012 to its decimal equivalent.

3. Convert lAF l6 to its decimal equivalent.

4. Convert IAF16 to its binary equivalent.

The hexadecimal system is really just the binary system except that it groups the bits into lots of
four. The place values of the binary system start at 1 and continue to two as represented in the
table below. The hexadecimal place values can be read by taking every fourth value.

Place number binary system value hexadecimal system value

I I I

2 2

3 4

4 8

5 16 16

6 32

7 64

8 128

9 256 256

10 512

EXERCISE 3.19

1. What is decimal value of the 13th position place in the binary system?

2. By using the table above, what are the place values in the hexadecimal system for the first
3 places? What place values do these correspond to in the binary system?

3. What is the decimal value of the 4th hexadecimal place?

•• JI •••••••••••

192

Computer Science

© IBO 3.5.4 CONVERSION OF NUMBERS IN DECIMAL, BINARY
2004 AND HEXADECIMAL

CONVERTING BETWEEN BASES
We can convert binary and hexadecimal representations to their decimal equivalent by following
the procedures shown above. But, from time to time, we may wish to convert decimal to binary,
decimal to hexadecimal, binary to hexadecimal and hexadecimal to binary.

Converting decimal to binary

SOLUTION
This can be done by simply looking across the place values and picking a value, which is closest
to, but, not greater than the desired value. Then move to the right and select values that add up to
the desired number.

By doing this we get 1 lot of 8, 1 lot of 4,0 lots of 2, 0 lots of 1 to give 11002 as equivalent to
12 10,

This is a bit hit and miss and is difficult to describe in an algorithm. Fortunately there is an easier
way. Repeatedly dividing the starting decimal value by 2 and keeping the remainders gives us a
simple way to convert. We stop when the number to be divided is O.

2112

21 6 remainder = 0 (from dividing into 12)

2 I 3 remainder =0 (from dividing into 6)

2 I remainder =1 (from dividing into 3)

2 I 0 remainder =1 (from dividing into 1)

By reading upwards the remainders are 11002 which is the binary representation for 12 base 10.

CONVERTING BETWEEN BINARY AND HEXADECIMAL
NUMBERS

As mentioned above the hexadecimal representation is really just binary. Note that 16 =24 . Note
also that the decimal values of hexadecimal digits can all be represented by 4 binary digits as
shown in the table below.

193

Computer Fundamentals

Binary Hexadecimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10 (A)

1011 11 (B)

1100 12 (C)

1101 13 (D)

1110 14 (E)

1111 15(F)

We can therefore convert binary numbers to their hexadecimal equivalent by grouping the binary
digits into lots of 4 and representing the group by the hexadecimal digital equivalent. Start
grouping from the right and if there are less than four digits remaining in the last group as you
move to the left add enough zeros (0) to make four bits.

Thus to convert binary 110 1111 2 to hexadecimal we would group the bits into two groups. We

start from the right hand side (not the left!). In this case the first group is 1111 and the second now
has only three bits so we add a zero to the left hand side so that the second group is now 0110. We
now look up the table to find the hexadecimal equivalent.

0110 1111 is equivalent to 6 F base 16.

Likewise to convert from hexadecimal to binary we replace each hexadecimal digit with the
corresponding four bit binary representation.

194

computer ~Clence

SOLUTION
From the above table note that F = 1111 2 and D = 1101 2 ,

Thus the required binary number is 1111 1111 11012

CONVERTING BINARY TO DECIMAL
How can we convert 101101 2 to its decimal equivalent? One way is to use the table approach and

start with left-most bit and work towards the right calculating the decimal place value until no
digits remain and then add up the values.

An algorithmic method exists. The steps are as follows:

Set total to 0
While not last bit

add bit to total and then double the total
move RIGHT to the next bit

Add last bit to total: STOP
total is the decimal value

Let's apply this algorithm to 10102 and then 1101 2

SOLUTION
Set total =0, start at left

Add 1 to total giving total = 1
Double and move to right

Add 0 to total and double and move to right. total 4
Add 1 to total and double i.e. total = 10
Last bit. Add 0 to total and Stop.
Total = 10

Thus the decimal value of 10 102 = 1010

SOLUTION
Set total = 0, start at left

Take 1 and add to total and then double total i.e. total 2

195

Computer Fundamentals

Take 1 and add to total and then double total i.e. total = 6
Take 0 and add to total and then double total i.e. total = 12

Last bit. Add 0 to total and Stop.
Total = 13

Thus the decimal value of 11012 =1310

EXERCISE 3.20
1. All values are base 10. Convert 7,63, 127,255 to base 2. Use the remainder method. Do

you notice a pattern?

2. Convert the decimal values in 1 to hexadecimal values.

3. Convert 101101110 1102 to hexadecimal.

4. Convert 10011112 to hexadecimal.

5. Convert 10101 2 to decimal by using the conversion algorithm.

6. Convert 101110110 111 2 to decimal.

7. Write a computer program to implement the algorithm to convert a decimal number to its
binary equivalent.

8. Write a computer program to implement the algorithm to convert binary numbers to their
decimal equivalents .

•.• 11 •• &&&<& & & &: & &

~6g2 3.5.5 REPRESENTING INTEGERS
Negative numbers in a computer are represented by using complementary arithmetic. This
representation has the advantage of turning subtractions into additions, thus simplifying the
computer's design.

Negative numbers

To do this we use what is called the 2's complement method.

In 2's complement the MSB has a negative place value. This means that if we use an 8 bit

representation the MSB (the 8th bit on the left hand side) would have the place value of -128.
Thus 100000002 =-128.

To represent positive numbers we use the normal method and set the MSB to O. This means that
for 8 bits the range of positive integers is from 0 to 127. Note that we can calculate the maximum

integer by use of the formula 2(n-1 L 1 =+127, where n =8 bits.

That is 01111111 2 =+127 10 , In general, for n bits the range is _2" - 1 and + 2" - 1 -1.

An aside. Note that 100000002 == 12810 and that 01111111 2 = 12710, This is an important general

result. If we add binary 1 to 01111111 2 we get 100000002 , In other words we get a carry flowing

all the way across the number.

196

Computer Science

How do we calculate the 2's complement of a negative number?

We will first do this in decimal, but we are assuming 8 bits.

To represent -34 we need to use a 1 in the MSB i.e. represent -128. Thus to get -34 we need to
add 94 to -128 to give -34.

Mathematically this means solving the equation:

- 128 + x = -34

x = - 34 + 128

= 94

We now represent 94 10 in the remaining 7 bits in the normal way..

Thus we get the representation 11011102

The table below will help you to work this out. The first row shows the decimal place values with
the left most value being -128. The remaining place values are 64 down to 1, which are

determined in the normal way i.e. 1 = 2° and 64 = 26 .

-128 64 32 16 8 4 2 1

1 1 0 1 1 1 1 0

0 0 1 0 0 () 1 ()

Using the above table the representation for -34 is shown in the second row. The third row shows
the representation of +34.

Now, if we add these values together i.e. -34 + 34 we should get O.

1 1 0 1 1 1 0 (-34)
0 0 1 0 0 0 0 (34)
1 1 1 1 1 1 (carry bits)

0 0 0 0 0 0 0 0 (result, the last bit that carries over is not used)

Algorithmic method

We can also apply an algorithm approach. To convert a sequence of binary bits to the equivalent
2's complement representation we flip the bits and add binary 1. By 'flip' we mean changing the
Os to Is and the Is to Os. This is very easy to implement.

To apply this method to a negative integer we first represent its positive value in binary, then flip
the bits and add binary 1.

SOLUTION
Step!: flip the bits. Thus 010101 becomes 101010

197

Computer Fundamentals

Step 2: add binary 1. Thus 101010 + 1 gives 101011

SOLUTION
We know the answer to this from the above example.

Step 1: represent 34 as an 8 bit binary number (note we use the full 8 bits) 00100010

Step 2: Flip the bits 11011101

Step 3: Add binary 1.

11011101 + 1 =110111102 is =-34 and corresponds to what we found above.

EXERCISE 3.21

1. Using 6 bits and 2's complement, represent the following numbers:

(i) -12 (ii) -31 (iii) -2

2. For each number, confirm that the addition of the positive number gives zero.

3. Convert -12 to 2's complement by using the algorithmic method.

4. Convert -31 and -2 to 2's complement using the algorithm method.

• ····.··>JI.<.<&..<.&>&···.····& ••····•

~6~,f 3.5.6 DEFINE ANALOG AND DIGITAL DATA
Analog data (A) is represented by some form of continuous representation, for example a wave
that represents a physical quantity or a sound level. The sound made by the human voice is called
a sound wave and can be represented by the use of a graph that shows the sound levels made by
the voice. These waves can be represented by sin(x) functions.

Digital data (D) is data that can be represented as discrete quantities as opposed to continuous
quantities. For example, the number of people at a football match is certainly not a continuous
piece of data! Data inside a computer is stored using the binary system, which is itself an on-off
system. Data within a computer therefore must be stored using a binary system.

In the normal world a great deal of data that is collected or captured is of an analog variety. For
the analog data to be stored in a computer it must be converted to a digital format. In many cases
this conversion process results in loss of accuracy as not all possible continuous values of the
analog data can be represented llsing a binary code.

The diagram in figure 3.19 shows the difference between analog and digital data. It also depicts
the process of input as a conversion from analog to digital and the process of output as often

198

Computer Science

involving the conversion of digital to analog e.g. playing back music that has been stored
digitally.

Figure: 3.19

continuous wave representation
Analogue signal

. tal signal
binary signal with two discrete
states (on/oft)

Upper leve(IU-U~ nIl r--
Lower levef I U L __J

At regular intervals, the values of the analogue sound wave are converted to binary numbers
representing, for example, pitch, amplitude and duration. This is known as 'sampling' - see the
example in Section 3.5.8.

EXERCISE 3.22

1. Define the terms 'analog data' and 'binary data'.

2. Why is a wave often a suitable representation of analog data, for example, to represent
sound, but is inappropriate to represent binary data?

3. List some examples of each form of data.

~6~.? 3.5.7 CONVERSION FROM DIGITAL TO ANALOG
It is often the case that a computer is used to control the operation of an electrical device such as
a motor. The computer is a digital world and an electrical device is an analog world i.e. voltage is
measured in a continuous manner, not a digital manner.

To enable this control we need to use a digital to analog (D-A) converter.

It is also often the case that a computer needs to accept inputs from analog sources. To achieve
this we need to use an analog to digital (A-D) converter.

Modems convert output from digital to analog format and then convert input from analog to
digital format. The diagram below depicts the sequence of events.

199

Computer Fundamentals

Figure 2.20 - Sound to computer storage

f\
! \

/ \ ~ 1 ~/ \I AID converterr--~
I
/ \
i
i

store in
• computer

~6~~ 3.5.8 APPLICATIONS OF CONVERSION
There are many applications that require conversion. Some of these are now briefly outlined
below:

Sound waves need to be represented in digital form in a computer system. They are obviously
analog in the natural environment.

Temperature sensing requires that readings from thermometers are able to be converted from the
analog reading to a digital representation. Thus an A to D conversion is required.

Figure: 3.20 - Sampling

~ ~
4 2

~ ~
100 0010

Analog signal

KEY
e: samples

~\, \

/ \

/
!

I
I
i

!
Analog samples 0

/
Binary code 0 0 0 0 0

~

\

This is a simplified
account of sampling. Real
systems include extra
digits to correct errors, to
keep the sampling
synchronised and other
refinements.

Voice recognition software needs to convert an analog voice signal into a digital format.

Optical Character Recognition requires the conversion of analog representations of letters into a
digital format.

EXERCISE 3.23

1. Explain, by use of a diagram, why inter-conversion of data between digital and analog
formats is required in a computer system?

2. Discuss the converting of sound or temperature data from analog to digital and digital to
analog.

3. What implications are there if more accuracy is required when representing an analog
signal?

JlJlJlJlJlaaaa.ltaaaa

200

Computer Science

~6823.6 ERRORS
HOW DATA ERRORS OCCUR.© IBo 3612004 • •

Data errors can occur in a variety of ways. Data is stored on secondary storage devices and the
surfaces of these devices can be damaged. Physical Damage such as a hard disk crash and
electrical interference can also lead to errors in data. The bits stored can be flipped i.e. a I can
become 0 meaning that the byte 10011011 could be changed to 11011101.

Data errors can also occur at input time i.e. data entry errors. Data entry errors are often due to
human error in either recording the original data or from the lack of data validation techniques to
detect simple transcription errors e.g. entering 345 instead of 245 or transposition errors e.g.
entering 345 instead of 354 in which the 5 and 4 digits have been transposed. Usually such errors
occur accidentally.

Data can also be changed deliberately. For example a student might gain entry to the student
record system and alter a mark stored for either themselves or for someone else.

~682 3.6.:2 PREVENTING AND DETECTING ERRORS
The detection of and/or checking for errors in an effort to prevent changes being made to the data
or prevent mistakes being made at data input time is an extremely important process. The terms
used to denote this process are that of maintaining the INTEGRITY or ACCURACY of the data
and protecting the SECURITY of the data from unauthorised access.

Checking for errors

It is important to distinguish between validation and verification.

• Verification means making sure that the data on the source documents is exactly the same as
that input to the computer system.

• Validation means attempting making sure that the data input into the system makes sense.

If it helps, remember that verification (ve) means making the data equal whereas validation (va)
means checking if the data is acceptable.

Verification

There are two main methods in common use:

Visual verification (or proof-reading) which means... (can you guess?)

• Double entry verification which involves having the data from the source document entered
twice as a check. Typically the application will lock the keyboard and give an audible
warning so that the data entry person can check carefully.

One of these methods is more reliable than the other.

Validation

Data entered into the computer can be unreasonable. A data entry person in a medical clinic can
easily mistype a person's weight, say, or the number of cigarettes they smoke per day. This type
of error is not caught by verification since the data may have been written down wrongly in the
first place.

201

Computer Fundamentals

Validation also checks for incomplete or inaccurate data. The main types of validation checks are
range checks, type checks and format checks.

Range checks

Numeric data can be checked in a variety of ways. One way is to apply a reasonable upper
and lower bound. A date can be checked to ensure that the day is between 1 and 31 and the
month falls within the range 1 to 12 inclusive.

The typical algorithm for a range check is to use a function that accepts as the data value
and values for the upper and lower limits of the range and returns a boolean true or false
depending on the result. A while loop is used to control the process.

Data type checks

Data values can be checked to see that they match the expected data type.

e.g. a char value for lower case can be checked to see that it falls within the expected
integer ASCII values.

A variable such as an age can be checked to see that letters have not been entered.

Data can be checked against valid lists of data. For example, a data type of MONTH could
contain a list of the valid months. If a month name was entered it could be validated
against the contents of the valid list.

Data format checks

A string field for name could be required to conform to the format requirement that at least some
letters are input i.e. the field is required to have a value and not be left blank. Some fields might
have a fixed length and some parts of the field may be character. For example, a date format:
14JULl950. A check could be made that the data is in ddmmmyyyy format.

Check digits

Input data or data that is transmitted from one location to another via a network can be validated
using the 'check digit' concept. Parity checking which is discussed below uses this same concept.

The notion is quiet simple. We apply some algorithm to the data and from this determine a
number that is appended to the data value. This value is called the 'check digit'. On the entry of
the data, or receipt of the data, this value is recalculated and the newly calculated check digit is
compared to the original one. If they match, the data is assumed to be correct.

A more technical definition is that a check digit is a digit calculated from the other digits in the
data item and appended to the data item. At input or prior to use the check digit is recalculated to
detect any error in the data. The method does not provide a way to fix the error other than to alert
the user that an error is present in the data. Check digits are not be confused with check sums,
which are applied to bit streams or binary data.

There are a number of ways of calculating a check digit. More complex ways are presented in
chapter 4. In this section will consider only two.

202

Computer Science

Method 1: Unweighted check digit.

Consider the data value 2345.

We can calculate a check digit by adding the digits up =2+3+4+5 =14

As 14 is not a single digit we repeat the addition ie 1 + 4 = 5

5 is our check digit.

Thus our data value could be 23455, where the last digit is the check digit.

On input this digit can be recalculated.

Thus if 22455 was entered i.e. a transcription error has occurred with 2 being entered for 3.

Calculate the check digit ie 2+2+4+5 =13 =1+3 =4

which does not match 5, the original check digit. Hence we conclude that the data value is
incorrect and we have successfully detected an error in the data. We could then either request a
resend or re-enter the data to ensure that we entered it correctly.

This method does not pick up transcription errors. If32455 was entered, i.e. the 3 and 2 have been
transposed, this method would not detect the mistake. Let's check.

recalculate the check digit =3+2+4+5 =14 =1 + 4 =5, which unfortunately matches. If we used
this validation technique we would not have detected the mistake and thus not prevented the data
error.

Method 2: weighted check digit.

What we do is weight each digit. We start at the first digit and multiply it by 1, then move to the
left and multiply by 2 and so on until there are no more digits. We do not include the original
check digit. This calculation is done below.

check digit =1*5 + 2*4 + 3*3 + 4 *2 =5 + 8 +9 + 8 =30 =3+0 =3

Thus our new check digit is now 3 and the data value would be 23453

If we transposed the first two digits, i.e. entered 32453, this would be detected as an error during
validation. The calculation is shown below.

new check digit =1*5 + 2*4 + 3*2 + 4*3 =5 + 8 + 6 + 12 =31 =3+1 =4

As 4 does not match the check digit of 3 an error is detected.

There are a range of other similar methods that can be applied. For example, a sequential file
could have as its first record the number of records in the file. This could be used to validate that
the file as been copied correctly in terms of the number of records.

Hardware errors

Data that is stored on disk can be corrupted by a malfunction of the hardware. This can alter data,
but often means that the data cannot be read, in which case the data needs to be retrieved from
backup.

203

Computer Fundamentals

Software related errors

Errors can occur with software as well as the data entry errors described above. Software errors
are usually put into one of three categories:

Logic errors: The coding of the program has been incorrect in sequencing or choice of
conditions, such as:

II algorithm to add up 9 numbers
II example of logic error - contains 3 logical errors

count = 0 II error 1 count is not incremented
numbers = 9
while count <= numbers II error 2 loop executes 10 times

sum = 0 Ilerror 3 sum is reset each time!
input (number)
sum = sum + number

endwhile
output (sum)

Logic errors should be detected during program testing and can only be prevented by thorough
testing and rigorous analysis of the requirements of the program!

Runtime errors: There are many things that can go wrong as a program runs, some examples
are:

• Division by zero.

• Truncation errors.

• File not found.

• Printer not ready.

• Illegal memory access.

Runtime errors can be prevented by placing error traps within the code to detect if a run time error
has been triggered e.g. a 'file not found' condition test. Such exception errors can be detected by
most program run-time environments. This assumes that all possibilities have been predetermined
by the programmer. It is not always possible to do this, but programmers should attempt to make
their programs as robust as possible.

Syntax errors: These are errors in the syntax of the program language - such as mis-spelling a
keyword (eg publuc vode someMethod()); these are caught at the compilation stage or
while a program is being interpreted.

Final comment. Is there a real difference between preventing errors occurring and detecting
them? In the above parity example we have detected an error but did not prevent it in the first
place, but we did prevent a change occurring to the data! The use of verification prevents
incorrect data being entered by detecting the possibility of a data input error. Data validation also
detects the likelihood of an error and therefore prevents an erroneous piece of data being input
and used!

204

© IBO 3.6.3 RECOVERY FROM ERRORS
2004

Re-input

If data is input incorrectly and caught by verification, or is not acceptable and is caught by
validation, it can simply be re-input in an online process. If it is a batch process, normally the
errors will be reported (printed out) and the batch process will continue with the next input. The
entries in error can then be included with the next batch.

Re-transmission

Transmission errors caught by parity checks can be automatically corrected in some
circumstances but more commonly there will be a request for a re-transmission of the data.

Backing up

For organisations whose very existence depends upon computer-stored data (banks among many
others) data is protected very carefully. Backups are taken every day and, indeed, every
transaction is backed up somewhere, at an ATM or a local branch, for example. Backup media are
typically stored in a fireproof safe or at a different location to the computer installation in case of
a fire, flood or other disaster. Full backups save a new copy of every file, incremental backups
save only those files which are new or have changed since the last backup. Tape is a common
backup medium because it is relatively inexpensive and, hopefully, the backup data will never
need to be accessed directly.

EXERCISE 3.24

1. Describe examples of how errors data entry errors can occur.

2. Describe how errors can occur in data due to the deliberate actions of individuals

3. How can software errors occur?

4. How can hardware problems cause errors?

5. Define the terms 'verification' and 'validation'.

6. Explain how parity checking operates by use of an example.

7. Use the resources available to you to find out how parity can be used to determine the
actual bit that has changed, therefore making automatic error correction possible.

8. Discuss, by use of examples, a range of data validation methods.

9. Explain how re-transmission might operate in a network to aid recovery from an error in
data transmission that has been detected.

10. A school reporting system fails on the morning that reports are to be printed. The deputy
principle asks that the data file be recovered from the nightly backup. Explain why the
backup is important and then outline a procedure for restoring the backup. Assume the
backup is held on a tape stored in the school safe.

11. Explain the difference between a check digit and check sum. Use the Internet to look up
how the TCP/IP Internet protocol implements a check sum error detection process.

205

Computer Fundamentals

~6~23.7 UTILITY SOFTWARE
The term 'utility software' refers to system software that is used to perform some form of system
level function to do with managing the data or performing some form of check on the data. The
software utilities covered include: data compressors, virus checkers, file managers and de­
fragmentation software.

~6~2 3.7.1 AND 3.7.2 FUNCTIONS AND NEED FOR THE ABOVE
UTILITY SOFTWARE.
File managers

File managers perform a range of functions:

Copy: allows files to be copied from one location to another.

Delete: allows the user to delete files.

Rename: allows the user to rename the file.

Create folders (directories): allows the user to make separate areas.

Formatting a disk

Hard disks and floppy disks store data in sectors. These sectors have a fixed size e.g.
512 Bytes. When a disk is formatted, the sectors are linked in a long chain. The operating
system maintains a file allocation table that contains the filename and the address of the
first sector of the file. If the file extends over more than one sector the links between the
sectors are used to retrieve the file. As files get deleted and reduced or expanded in size the
sectors need not be contiguous i.e. 'side by side'. The more the sectors of a file are split up
over the disk the longer it takes to access the whole file or sections of the file.

Find: allows the user to search a specified disk area for a file.

Backup:

Backing up data will be a routinely scheduled operation in every business whose activities
depend upon data held in their computer systems. For many organizations, their data is
everything; banks, for example, deal as much or even more with data as they do with
money.

In organisations with very large amounts of data which is rarely accessed but still needs to
be kept (legal firms keeping details of past cases, insurance companies keeping old
contracts, oil companies keeping exploration data on different countries) the data will be
archived. The weather case study of 2001 is a case in point. Vast quantities of data are
gathered and stored for use with medium and long-range forecasting models. Often such
data is stored in an automated retrieval system. For example, cassette tapes can be used
with programmable machines used to fetch data for a particular week.

Restore: allows the user to request a file to be restored from the backup.

DEFRAGMENTATION

A disk's surface is also divided into used sectors and free sectors. In a fragmented disk the free
space and used space tend to get mixed up. To increase performance a defragmenting software
utility is run. It places all the files into closely linked sectors that occupy closely related sectors.
This improves performance.

206

Computer Science

The diagram below will help explain the process. When files are first stored on a newly formatted
disc, they are stored in continuous blocks i.e. all blocks related to the one file are linked next to
each other.

o 6 7 8

If the file _-'A' is removed and another file added which, say, occupies 3 blocks; the operating
system uses the first two available block previoUSly occupied by the file _ -'A' (blocks 3 and 4)
and then links to the rest of the file in the block 7.

o 8

The file _ -'B' is now fragmented. If this process continues with the addition and deletion of
many files then a single large file can be split over different parts (even different surfaces) of a
disk. This increases the time taken to access and load the file into memory.

The purpose of defragmentation is to group the related disk areas together to improve the speed at
which data is recovered or read.

DATA COMPRESSORS
Data files can take up a great deal of space and can take considerable time to transmit. An obvious
and rich source of interest in computer science is to ask 'is it possible to somehow reduce the size
of file in some way to speed up transmission and save space'?

Data compression software can be used with text and other files to:

• save space on backing store.

• save time when transmitting data (e.g. over the internet).

When compressing text files it is important to be able to decompress them to get back exactly
what was there in the beginning.

An example of how text compression might work:

The brown cow jumped over the lazy dog.

Certain words appear commonly between spaces (such as " the ") and can be represented by a
single "token" or symbol thus saving 4 spaces in the file. The same for common combinations of
letters like "ow" or "er" or "ed", these can then be represented as a single token. The compression!
de-compression utility needs to maintain a table of tokens and their expanded meaning. This
would make an interesting HL dossier topic.

Another common form of text compression works by self-reference. Consider the phrase:

The brown cow rowed the brown boat.

The word 'brown' starts at position 5 and occupies 5 characters. It also begins and ends with a
space. Thus the second 'brown' can be replaced:

207

Computer Fundamentals

The brown cow rowed the 47 boat.

How many characters are saved here? What is likely to happen as text size increases?

In fact, more subtle techniques can be applied here since repeated sequences can cross, or be
within, word boundaries. How far can you reduce the above sentence?

Try searching the internet for more details on Ziv Lempel compression.

Compression is also used with media files such as graphics, music and video files. In this case,
unlike with text, some quality is sacrificed in the compression process.

Consider a red square image of 300 pixels by 300 pixels. Such an image contains only the one
colour. An alternative way of storing the image would be store integer values for the height and
width and then store the colour as an integer. If we assume an integer take 2 bytes we have
reduced the image from 90,000 Bytes to 3 bytes!! Most compression does not give such startling
results.

VIRUS CHECKERS
Viruses range from the harmless to the deadly. A virus can be loosely defined as:

a computer program which has the ability to replicate itselfand/or has a ''payload'' - i.e. does
something on the target system

This definition does not take into account subtleties like 'trojan horses' but it is sufficient for this
course. You can find more information by searching the world wide web. A suitable reference is to
be found at the symantec web site at

http://www.symantec.com/avcenter/refa.html

A virus checker has two roles. The first is to scan files and to report if any viruses are detected and
to then attempt to remove the virus. The second role is to check incoming files to determine if
they have a KNOWN virus.

EXERCISE 3.25

1. Outline the major feature of the following utilities:

virus checker.
defragmentation.
decompression.
file manager.

2. Some consider the virus checker to be the most important utility. Discuss this claim with
reference to the impact that viruses can have.

3. Computer system performance can be enhanced by the use of file decompression and file
defragmentation. Explain, by use of a diagram, how performance can be enhanced. Make
sure you mention what type of performance is being improved.

208

------ ---~~-----------Chapter contents

4.1 Number Systems and representations
4.2 Boolean Logic

••0------ -~---~----------__

209

Computer Science

Number Systems

~6~24.1 NUMBER SYSTEMS AND
REPRESENTATIONS
INTRODUCTION
This section covers the theory relating to the representation of integers and real numbers in
computers.

The IB specific learning objectives are then covered in the sequence they are specified in the
syllabus i.e. 4.1.1 to 4.1.6.

Note: some aspects of earlier SL level work covered in either chapter 2 or 3 are repeated in
context here.

~6~24.1.1.3CALCULATE IN BINARY, DECIMAL AND
HEXADECIMAL

Binary addition has the following four rules. Note: all calculations are using base 2.

0+0=0

1+0=1

0+1=1

1 + 1 =0 carry 1.

Why the carry?

Recall that in decimal 9 + 3 = 12 carry the 1 to the tens column thus we get 12 base 10.

In binary 1 + 1 = 10 base 2. In decimal 1 + 1 is 2 and 2 is represented as 10 in base 2.

These rules are reasonably simple to apply. All the following examples are in base 2:

SOLUTION
o 0

1 o

o

1

1

210

o

+

carry digits

Computer Science

Binary Subtraction:

Rules for binary subtraction are as follows:

O2 - 12 =12 , with a 'borrow' of 102 and 'payback of 12

We adopt the normal subtraction algorithm of 'borrowing' and 'paying back'.

Thus 0 - 1 =1 after borrowing. When we borrow in binary, we borrow 102 i.e. 2 in decimal.

When we borrow, we borrow decimal 2 and thus (102 + O2) -12 is 12 , When we pay back we pay

back 102 or 12 into the column to the left.

Let's try a simple example first and subtract 102 - 12 in base 2 i.e. 2 -1 in base 10, which should

give us 1.

SOLUTION
Step 1: Borrow 1, i.e. 10, and thus get 1 and pay back 1

1 (10)0
1 -

1
Step 2: pay back of 1 as shown in the next part

10
1 1 -

01 (answer) i.e. 2 -1 =1 in decimal

211

Number Systems

SOLUTION
1
o

o
1 -

Step 1: borrow 10 as shown in next part

1
o

(10)0
1-

Step 2: pay back 1 as shown in next part

1 1 0
o 1(1) 1- (note: 1(1) is really 1+1 =10, we now have 1 -10 in column 2)

Step 3: we now have to borrow to 10 from column 3 and this gives 10 + 1 = 11

1 (11) 0
o (10) 1-

1 (note: perform 11 - 10 to give 1)

Step 4: pay back 1 into column 3 as shown in next part

o
1-

o i.e. 3 in decimal, which is what we expected!

ADDITION OF HEX VALUES
Recall that hex is base 16 and uses digits 0 through to 9 and then the letters A through to F to
represents the digits 10, 11, 12, 13, 14 and 15.

Place values in hex are powers of 16 and are therefore 16°, 161,162 and so on.

When we add in decimal we carry values into the next column across when we exceed what we
can represent in a column with the available digits. Thus 12+9 gives a carry of 1 into the next
column, i.e. a 10 is carried over and added to the current 10 to give 20 and the digit 1 remains in
column 1, giving 21 as shown.

12

9+ gives 10 + (2+9) =10 + 11 =21

This process is often represented using a carry digit.

212

Computer Science

Likewise with hex, when we add values that equal or exceed 16 we need to perform a carry to the
next column as shown when adding 816+9 16, (Note: 1610 = 10 16)

8

9+

17 10 which is 1 lot of 16 i.e. (10 + 1)16 unit i.e. 11 16 ,

Let's do three more examples.

SOLUTION

A is 10 in decimal, thus we have 10 + 8 =18 in decimal, which is 16 +2.

16 + 2 in hex is 1016 + 216 = 1216 i.e. we often say "2 and carry 1".

SOLUTION

F is 15 in hex, thus we have 15 + 15 = 30 in decimal, which is 16 + 14.

SOLUTION

5 + D =5 + 14 =1910 =16 + 3 =1016 + 316 =13 16

This means we have a carry of 1 into the left hand column, as we can only represent one digit in a
column, and retain the digit 3 in the first column.

To complete the addition we have:

A + F + 1 = 10 + 15 + 1 =2610 =16 + 10 =1016 + A I6 =lA16. The two digits occupy positions 3
and 2.

Hence, putting the result together we form the final value of lA3 16•

213

Number Systems

RULES OF HEX ADDITION
Provided that the result of adding two hex digits together does not exceed 15 10 we can simply

write down the digit. But, where the results exceeds 15\0, we have a carry involved.

You can construct a 16 by 16 table to record all possibilities. This is left to you to do as an
exercise, if you wish.

To calculate the carry, convert the sum to a decimal and then back to its hex representation, noting
the carry as shown in the above example 3.

EXERCISE 4.1
All numbers in the first two questions are binary.

1. Perform the following additions:

(i) 101 + 10 (ii) 111+11 (iii) 1010101+101011

2. Perform the following subtractions:

(i) 10 - 1
(iv) 1111-100

(ii) 11-1 (iii) 1011-1011

3. Perform the following hex additions, note the base has been left out.

13 + F
FF+DD
12A + 2F
FFF + ADF + ACF

.......................
REPRESENTING INTEGERS

An 8 bit byte uses 8 bits. Thus it allows 28 = 256 different combinations of Is and Os, i.e.
11111111 down to 00000000. This would allow us to store all the positive integers from 0 to 255
or 256 different numbers.

But this is only useful for representing unsigned positive integers. To represent both positive and
negative numbers we could use what is termed 'sign and magnitude representation'. This is done
by assigning the left-most bit (most significant bit - MSB) to represent the sign i.e. I for a
negative and 0 for a positive. Thus: 1111 1111 2 =-127\0 and 0111 1111 2 =+ 12710 .

We could now represent all the positive and negative from -127 to +127. Thus, in 8 bits we have

the ability to store integers in the range (+ or -) - 2(8-1) - I to +2(8-1) - 1.

This can be generalised for n bits. That is, if there are n bits available and we are using the MSB

as a sign bit, the range of integer numbers that can be represented is between _(2n - 1 - 1) and +

2n - 1-l.

214

Computer Science

Confirm your answer by applying the formula.

Using 6 bits, what range of numbers can be represented?

In general, if there are n bits and we use an unsigned representation, what can you say
about the number represented by 1s in all but the MSB, which is O? What is the number
represented by the MSB being set to 1 and all the other bits set to O?

EXERCISE 4.2

1.

2.

3.

••••••••••••••
Negative numbers in a computer are represented by using complementary arithmetic. This
representation has the advantage of turning subtractions into additions, thus simplifying the
computer's design.

REPRESENTING NEGATIVE NUMBERS
To do this we use what is called the TWO's (2's) complement method.

In two's complement the MSB has a negative place value. This means that if we use an 8 bit

representation the MSB (the 8th bit on the left hand side) would have the place value of -128.
Thus 100000002 = -128.

To represent positive numbers, we use the normal method and set the MSB to O. This means that
for 8 bits, the range of positive integers is from 0 to 127. Note that we can calculate the maximum
integer by use of the formula 2(n-lLl (= +127, where n = 8 bits).

That is 01111111 2 = +12710 , In general,for n bits the range is _2n - 1 and + 2n - 1 -1.

An aside. Note that 100000002 = 12810 and that 0111 I 1112 = 12710, This is an important

general result. lfwe add binary 1 to 011111112 we get 100000002 , In other words we get a carry

flowing all the way across the number.

How do we calculate the 2's complement of a negative number?

We will first do this in decimal, but we are assuming 8 bits.

To represent -34 we need to use a 1 in the MSB i.e. represent -128. Thus, to get -34 we need to
add 94 to -128 to give -34.

Mathematically, this means solving the equation:

-128 + x = -34

x = - 34 + 128

= 94

We now represent 9410 in the remaining 7 bits in the normal way.

Thus we get the representation 11011102

215

Number Systems

The table below will help you to work this out. The first row shows the decimal place values with
the left most value being -128. The remaining place values are 64 down to 1, which are

determined in the normal way i.e. 1 =2° and 64 =26.

-128 64 32 16 8 4 2 1

1 1 0 1 1 1 1 0

0 0 1 0 0 0 1 0

Using the above table the representation for -34 is shown in the second column. The third row
shows the representation of +34.

Now, if we add these values together i.e. -34 + 34 we should get O.

o

o

o

o

o

o

o

o

o

o

o

1

o o

o

o

o

(-34)

(34)

(carry bits)

(result, the last bit that carries over is not used)

Algorithmic method

We can also apply an algorithm approach. To convert a sequence of binary bits to the equivalent
2's complement representation we flip the bits and add binary 1. By 'flip' we mean changing the
Os to Is and the 1s to Os. This is very easy to implement.

To apply this method to a negative integer we first represent its positive value in binary, then flip
the bits and add binary 1.

SOLUTION
Step!: flip the bits. Thus 010101 becomes 101010

Step 2: add binary 1. Thus 101010 + 1 gives 101011

216

Computer Science

SOLUTION
We know the answer to this from the above example.

Step 1: represent 34 as an 8 bit binary number (note we use the full 8 bits) 00100010

Step 2: Flip the bits 11011101

Step 3: Add binary 1.

11011101 + 1 = 110111102 is =-34 and corresponds to what we found above.

WHY THE 2'5 COMPLEMENT ALGORITHM WORKS
Think of n bits, in this test case n = 4

eg 0101 -+---------+___ eg 1010

All members of Bn start with a O.

All members of Cn therefore start with a 1.

Each member of Bn has a corresponding one and only one member in Cn-

When we add the corresponding members we form the sequence 1111, e.g. 0101+1010 =1111.

This is true for ALL pairs.

If we now add binary 1 to all Cn members, we get a new set of sequences that are also related to
the same Bn members in a one to one relationship.

i.e. Bn 0101 is linked to Cn 1010 + 1 =1011.

If we now add the two sequences we get 10000! i.e. (Bn) 0101 + (Cn + 1) 1011 = 10000.

If we ignore the MSB bit the resulting sequence is equivalent to zero.

This result enables us to implement the conversion of binary sequences to their complementary
format with the property that if we add them, we get zero.

This is the basis of the 2's complement algorithm!

217

Number Systems

EXERCISE 4.3

1. Using 6 bits and 2's complement represent the following numbers.

(i) -12 (ii) -31 (iii) -2

2. For each number confirm that the addition of the positive number gives zero.

3. Convert -12 to 2's complement using the algorithmic method.

4. Convert -31 and -2 to 2's complement using the algorithmic method.

....................
REPRESENTING REAL NUMBERS
Real numbers differ from integers in that they can contain a fractional component e.g. 45.0098.
Real numbers can be positive or negative. There are two ways of representing real numbers: fixed
point or floating point. Real numbers can be represented in any base and the whole number and
fraction part are separated by a 'radix point' . In the base 10 (decimal) system this point is known
as the 'decimal point'.

The binary number system represents the fraction component of a real number by using powers of
2 that are negative. The table below shows the decimal equivalent of the first eight bits working to
the right of the radix point.

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8

0.5 0.25 0.125 0.0625 0.03125 0.0015625 0.0078125 0.00390625

Thus a binary number such as 11.012 represents 3.25 10 ,

Fixed point

Fixed point assumes a fixed position for the radix point. Using normal decimal representation we
could write a number as 23456534 and say that the decimal point is assumed to be between the

3rd and 4th digit. That is the number represented here is 23456.534 using base 10.

How does this work in a computer? Assume that a computer uses 8 bits to represent real numbers

and that the radix point was always fixed between the 3rd and 4th bit position. This means that the
bits in positions 4,5,6,7 are able to represent the whole number part and bits 3,2 and 1 are used to
represent the fraction part. Bit 8 is used to represent a negative value.

This setup is represented by the diagram below.

8th 7th 6th 5th 4th 3rd 2nd pt

0 0 1 5 2 3 4 1

The number represented is + 152.341, assuming the MSB was a sign bit.

We shall discuss briefly below the disadvantages of this method.

However, computers can only store binary values of 1 or O. Thus, using the above setup we could
store only values between the minimum 11111.111 and the maximum 01111.111.

218

Computer Science

Note: the decimal fraction parts allows fraction values ~ , ~ and ~ .

The minimum is thus:

1 1 1 7-(8+4+2+1+- +- +- =-15-)=-15875 102 4 8 8 .

The maximum is:

1 1 1 7
+8+4+2+1+ 2 +4 +8 =+15 8 =+15.875 10

SOLUTIONS

(a)

(b)

1 1
(+) 4 + 2 + 1 + 4 = +7 4 = + 7.25 10

(-) 0 1 1 0 . 100 = 10110100

This system can equally well be applied to the 2's complement notation where the sign bit is
replaced by a bit having the same place value, but which is negative. To illustrate some limitations
of fixed point, we now place the binary point between the 4th and 5th bits as well as using the 2's
complement.

8th 7th 6th 5th 4th 3rd 2nd 1st

_23 22 21 2° 2-1 2-2 2-3 2--4

-8 4 2 1 1 1 1 1
2 4 8 16

Thus 00111.0102 in this system represents the decimal value - 8 + 0.5625 = -7.4375.

Note that all the normal rules of 2's complement discussed in Chapter 3 still apply. Verify this by
working out the value of +7.4375. This is still obtained by flipping all the bits and adding 1.

EXTENSION ACTIVITY:
Draw a number line and mark offALL the possible numbers that can be represented in each of the
above systems. This is not as difficult as it seems! What do you notice about the distribution and
spaces between groups of numbers. What is the 'trade-off' between accuracy and range?

••••••••••••••
219

Number Systems

FLOATING POINT REPRESENTATION OF REAL NUMBERS
Real numbers such a 12.5 and -12.5 can be positive or negative and can have a fractional or
decimal part i.e. 0.5 in the numbers stated here.

Over the years, the representation of floating point number in computers has caused a number of
problems and it is only recently that a reasonably standard way of representing them has been
implemented. This is known as the IEEE 734 standard. But, as it uses a slightly different way of
presenting negative binary values than 2's complement, and also uses a variation on normalised
format as used in the IE course, we will not be considering it here. Readers are referred to the
following web site for a discission of the IEEE standard and floating representation in general:

http://www.wikipedia.org/wiki/IEEE_Floating_PoinCStandar

Real numbers can be written in scientific normalised format. This is done by moving the decimal
point until the number is between 0 and 1 in the decimal system to form the MANTISSA and then
multiplying by 10 raised to the appropriate power i.e. the number of places moved, which is
called the EXPONENT.

For example: -123.0098::: -0.1230098*103.

(Note: this is not quite the same as the mathematical definition of normalisation).

SOLUTION
Normalised Decimal Format

Step 1: Move the decimal point two places to the left to give 0.125

Step 2: Count up the number of places moved and the direction to give +2

Step 3: Write the normalized format as 0.125 * 102

Thus 12.5::: 0.125 * 102 (in normal maths, it is written as 1.125*101)

The mantissa is 0.125 and the exponent is 2

Normalised Binary Format

Step 1: Convert 12.5 to binary i.e. 1100.12

Step 2: Move the point 4 places to the left i.e. 0.11001 2

Step 3: Write the exponent 4 in binary i.e. 4]0::: 01002

Step 4: Write the number as (mantissa * 2exponent)

0.11001 2 * 2°100

220

Computer Science

EXERCISE 4.4
Write the following in decimal and then binary normalised format: 8.25 & 11.5. State the
mantissa and exponent in each case .

••••••••••••••
How is the binary format stored?

You will have noted that floating point representation uses two values: the mantissa and the
exponent. Any internal computer representation needs to store these in a fixed number of bits. We
will consider the issues of negative mantissas and exponents shortly.

Assume that we have 10 bits: 4 for the exponent and 6 for the mantissa. Also, assume that we
cannot actually use the left most bit in either because we will use this to represent negative values
using 2's complement. In the example that follows the left most bit is set to o.

Our format looks like this with the MSB being reserved for the sign of the mantissa and hence the
number ie 0 is + and 1 is -.

Sm M M M M M SE E E E

Using this format the binary normalised format of 12.5 would be as shown:

Sm M M M M M SE E E E

0110010100

EXERCISE 4.5
Using the values from the previous exercise, represent each in this format.

••••••••••••••

What have we actually stored?

We have stored a fraction and an exponent.

The mantissa has this value:

1 1 1 16 8 1 250.11001 = -+-+- = -+-+- = - =078125\0
2 4 32 32 32 32 32 .

The exponent has this value: 0100 = 4

To calculate the decimal value stored, we perform the following calculation.

0.78125 * 24 = 0.78125 * 16 = 12.510

221

Number Systems

EXERCISE 4.6
Select one of the values from the previous exercise and confirm that the representation is
equal to the desired decimal value .

••••••••••••••

What about negative real numbers or small fractional numbers?

Recall that negative binary numbers are stored in 2's complement format. To derive the 2's
complement format we flip the bits and add binary 1.

Thus negative numbers are stored using 2's complement to represent the mantissa and similarly
for fractions, the exponent is negative and represented in 2's complement.

SOLUTION
Given that both the mantissa and the exponent are written in 2's complement format we can now
write in the decimal values of the sign bits for the mantissa and exponent.

The exponent is -8 and the mantissa is -1 i.e., the leftmost bit is negative. Hence the place values
of the 10 bit format are as shown in the following diagram.

Sm M M M M M Se E E E

-1
1 1 1 1 1

-8 4 2 1
2 4 8 16 32

Note: there is a binary point between the Sm and the M, and the MSB indicates the overall sign of

the number.

How to convert -12.5

Step 1: Convert 12.5 to fixed point 01100.1

Step 2: Normalise (shift 4 places) 0.11001 exponent 4.

Step 3: Convert exponent to base 2 0.11001 exponent 0100

Step 4: Convert the mantissa ONLY by flipping bits and adding 1 1.11001 0100

Step 5: Convert back to decimal as a check:

(
4 + 2 + I) 4 (7) 4 25- 1 + x 2 = - 1 + - x 2 = -- x 16 = -12 5

32 32 32 .

222

Computer Science

It is outside the scope of the course, but to subtract two numbers we add the complement mantissa
and the other mantissa i.e. 12.5 - 12.5 =0 as shown below

011001

100111 + complement

000000 i.e. the mantissa is zero and it is irrelevant what the exponent is.

What does the computer actually store? In this instance, the value of the mantissa is -0.78125 as
shown below, and the exponent is 4.

Sm M M M M M Se E E E

-1
1 1 1 1 1

-8 4 2 1
2 4 8 16 32

-1 0 0 1 1 1 0 1 0 0

Thus the mantisa
1 1 1

=-1+-+-+­
8 16 32

4 2 1
=-1+-+-+­

32 32 32

32 7= --+-
32 32

25
32

= -0.78125

The exponent is 4 and thus 24 = 16.

Hence the decimal value represented is -0.78125 10 * 16 =-12.5 10

Thus there are alternative ways of evaluating and converting numbers and students will benefit
from trying different strategies 'by hand' rather than relying on a calculator.

EXERCISE 4.7
Take each of the values in exercise 4.4 and assume they are now negative. Using the
method shown above, convert each to the equivalent binary representation. Use the 10 bit
format.

223

Number Systems

How to represent small fractions.

SOLUTION
0.125 10 =0.001 2

In nonnalised fonnat this is 0.1 * 2-2

We note that the mantissa is positive but the exponent is negative.

The mantissa is therefore 010000, using the 6 bit mantissa.

Thus we need to convert the exponent of -2 to a 4 bit 2's complement fonnat (remember we are
using the 10 bit format).

Thus -2 =-8 + 4 + 2 =11102

The exponent is thus 11102 and the full fonnat is 010000 11102

Note the MSB is 0, indicating that the number is positive.

EXERCISE 4.8

1. Using the 10 bit fonnat, represent the following values: 0.5,0.25. -0.5, -0.25

2. What range of numbers can we represent using the 10 bit fonnat?.................
Let's review some number line concepts. Assume zero is in the middle.

1. As you move to the right of zero the numbers increase in size and are positive.

2. As you move left from positive +1 towards, but not past zero, the numbers decrease in
dimension and are fractional with increasing numbers of leading zeros to the right of the
decimal point e.g. 0.000000000125 10

3. As you move to the left of zero the numbers decrease in dimension and get small i.e. -10
is smaller that -9 (would you rather give away 10 amounts of gold of the same size or 9?).
e.g. -0.125 10 is smaller than -0.00125 10 .

4. As you move right from -I towards, but not past zero, the negative values get close to zero
but not equal to zero and the number leading zeros increases, for example: -0.00000125 10•

EXERCISE 4.9
Draw a number line and, using the 10 bit fonnat, convince yourself of the above points

224

Computer Science

Largest Positive magnitude number

Assume we are still using our 10 bit format i.e. 6 bits in 2's complement format for the mantissa
and 4 bits in 2's complement for the exponent.

On the number line the term 'largest magnitude' is used to refer to positive and negative numbers
as they move away from zero. Thus the largest positive number is in fact the number with the
largest positive magnitude. Likewise the negative number that is the furthest away from zero is
referred to as the negative number with the largest negative magnitude.

Numbers close to zero are said to have small magnitude and can either be positive or negative.

The largest positive floating point number has the largest mantissa and largest exponent.

The maximum exponent is 0111 2 = 710

The maximum mantissa is 011111 2 =i + ~ + ~ + /6 + 3
1
2 = ~~

Maximum = ~~ x 27 = 0.96875 x 128 = 12410

Another way to think of this is that we want the normalised fraction component to be as close to I
as possible so that the multiplication by the largest exponent value is maximised.

Largest negative magnitude number

The largest negative magnitude number is formed by using the minium mantissa.

i.e. 1000002 = -1 10 in 2's complement and the maximum exponent i.e. 0111 2 = 710

Thus the number =-I * 27 =-128.

In summary, the range of numbers using the 10 bit format is -128 to +124

Smallest magnitude positive number

This is the number closest to zero on the positive side of the number line. It has the smallest
possible normalised mantissa and the largest negative exponent:

0.100001000 or 0.5 x 2-8 = ~5~ = 0.001953125

Notice that, although a mantissa of 000001 is smaller, it is not normalised.

Smallest magnitude negative number

This is closest to zero but negative. It has the smallest possible normalised negative mantissa and
the largest negative exponent:

1.01111 1000 or -0.53125 x 2-8 '" -0.0020752.

Notice that 1.00001 is actually larger in magnitude than 1.01111. It is - ~~ rather than - ~~ .

Trying to represent numbers closer to zero than those given above results in an 'underflow error' .

225

Number Systems

How to interpret bit patterns

An alternative way of working with bit patterns is to move the decimal point as explained below.

Positive values

What is represented by 0.11010 I 0011?

The number is positive as the MSB is O.

The exponent is decimal 3. Thus, move the decimal point three places to the right to give:

0110.102 =4 +2 + 0 + 0.5 =+6.5]0

(Note: an alternative is to think of the decimal point remaining fixed and the digits shifting three
places to the left!).

Negative values

What is represented 100110 I OIl?

The number is negative as there is 1 in the MSB.

Thus we need to revert to the original bit pattern. Thus, flip the bits and add 1.

Flip 100110 to get 011001.

Add 1 to get 011001 + 000001 = 011010

The exponent is 011 2 =3]0 hence, move the point 3 places to the right.

Thus, the number is as followed.

011010 = 0.11010 = 0110.10 = -6.5.

EXERCISE 4.10
Consider a system with a 4 bit mantissa and a 6 bit exponent.

1. What is the range of numbers that can be represented in this system?

2. What is the effect on the precision with which numbers can be held?

3. How is zero represented? What problems might this issue raise?

4. Write the following numbers in normalised form. Clearly indicate the mantissa and
exponent in each: (i)123.098 (ii) 0.00004567 (iii) --453.09888

5. Assume that we have a 16 bit format with 10 allocated to the mantissa and 6 to the
exponent, both are 2's complement format.

Represent the following numbers. 11.125, -11.125

6. Using your chosen programming language, find out the method it uses to represent
integers and floating point numbers. Find out also the range of integers and floating point
values provided by the language.

••••••••••••••
226

Computer SCIence

©IB04.1.4 ADVANTAGES OF INTEGER AND FLOATING-POINT
2004 REPRESENTATIONS

Integers have a finite range, but a11 values inside the range can be stored accurately. Whilst
overflow errors occur these can be pre-empted by the programmer and trapped because the exact
maximum and minimum can be easily determined given the number of bits used. Commonly, 32
bits are used to store single precision and 64 bits are used to represent double precision or long
integer values. Using an unsigned integer we can store large positive integers using 32 bits.

Using 32 bits 2's complement the maximum integer is n = 32.

01111111111111111111111111111111=2(32-IL1=2147483647.

The sma11est negative integer is _231 . Whilst this is a reasonable range we can do better, but we
may lose some accuracy.

Floating point representation greatly expands the range of numbers that can be represented.
However, not all numbers can be represented in the allowable range. This can lead to truncation
errors that in tum lead to inaccuracy and possible errors in output.

It is also an interesting fact that the gap between representable numbers is not constant.

The other obvious advantage of floating point over integer representation is that it allows the use
of fractional values. This is clearly outside the scope of the integers.

Fixed point representation of real numbers suffers from similar limitations of range as integer
representations.

EXERCISE 4.11

1. Assume that you were to use the 8 bit fixed representation for floating, with the decimal

point being assumed to be between the 5th and 6th bit. What is the range of numbers that
can be represented?

2. Investigate your chosen programming language to determine how it handles overflow and
underflow errors. Do overflow errors cause run-time errors for floating point values? Are
underflow errors reported as zero?

3. Write a program that accepts a standard integer and prints this out. Try to enter large
values and see what is displayed. Explain the result.

4. Write a program to store a floating point number and then assign this value to an integer.
Printout the percentage rounding/truncation error that has been introduced.

5. Write a function to accept a floating point value and an integer value that represents the
number of decimal points to be rounded off. For example, 12.3456 and 3 would indicate
rounding off to the third decimal place and 12.346 would be returned by the function.

6. Write a program to investigate the following looping algorithm. Vary the increment value
to see if there are times when the test of the sum does not give the expected result.

Start
increment 0.001
sum = 0
counter =0
limit = 6

227

Number Systems

while (counter < limit) {
sum = sum + increment
counter = counter +1

}

if (sum
else

End

counter + increment) {Output 'yes'}
{Output 'No'}

Explain the different results, assuming there are some.

a.····.····.•··.···a·····. .<.................•.....
REVIEW EXERCISE 4.12

1. Define the terms 'fixed point representation' and 'floating point representation'.

2. Describe the difference between normalised and un-normalised form. Give examples to
support your answer.

3. Using fixed point representation, show how 234.5 could be represented using 10 bits,
where the decimal point is located between the 3rd and 4th bit. The MSB bit is a sign bit.

4. Represent 234.5 as a normalised decimal floating point number. Clearly state the mantissa
and exponent.

5. Write 234.5 in binary format and then convert it into normalised format. State clearly the
mantissa and exponent.

6. Using the 10 bit representation described earlier, is it possible to store 234.5? If not what
type of error would occur if you attempted this?

7. In order to store 234.5 what size mantissa and exponent would be needed?

8. For the newly sized mantissa and exponent suggested above what is the range of real
numbers that can be represented?

••••••••••••••
© IB0 415·62004 ••

'tRUNCATION, UNDERFLOW AND OVERFLOW ERRORS
A truncation error occurs when a real number is assigned to an integer variable. For example,
assume x is an integer and we are able to assign 12.098 to the variable. The stored integer is 12.
An error of 0.098 has occurred and this amount of accuracy has been lost.

Overflow integer errors can occur when you try to store a number that cannot be represented in
the allocated number of bits. For example, if 8 bits have been allocated the maximum unsigned
integer, i.e. positive integer, that can be stored is 1111 1111 2 =1+2+4+8+16+32+64+128 =255 10 ,

If we attempt to store a number bigger than 255 an overflow error will be reported i.e. 'number
too big'.

Overflow integer errors can also occur using 2's complement. Assume we have a 4 bit 2's
complement format. Assume the operation 0111 2 + 0111 2 was undertaken. What would happen?

The resulting binary addition produces the bit pattern 11102, which is, of course, negative! In this

228

computer :SCIence

case the bits from the carry have overflowed into the -8 place value position.

Overflow floating point errors occur when we try to use more bits than are available to store a
number. Floating point overflow errors occur if numbers with either the mantissa or exponent are
too large to fit into the allocated bits.

In the previous section we used a 10 bit format with 6 bits for the mantissa and 4 bits for the
exponent. The allowable range of possible numbers ranged from -124 to +124. Numbers outside
this range cannot be represented using this format.

In this example, if we tried to store 160.5 10 =10100000.1. Written in normalized format we have

0.101000001 X 28 or 0.101000001 X 21000.

The mantissa requires 9 bits and the exponent instead of being +8 is in fact -8!

Overflow errors are reported as exceptions in languages such as Java and can be trapped by the
programmer, otherwise the program may fail.

Underflow errors occur when an attempt is made to store a number that is too small. Such
attempts are not reported as errors but default to zero and can cause run-time errors such as
'divide by zero' or worse, they cause important calculations to become zero.

In our 10 bit format we allowed 4 bits for the exponent. If we tried to store a number that in
normalised format required the binary point to move more than 8 places to the left we would get
an underflow error occurring because we can only represent up to -8.

For example: store the number 0.1 X 2-10
10 = 0.00000000001. (Note the exponent is decimal-lO

not binary 10). In this case the exponent cannot be represented and would require an exponent of
5 bits in 2's complement to represent the left shift of the point. The mantissa could be
represented.

EXERCISE 4.13
1. Define the terms underflow and overflow error and give examples to illustrate your

definition.

2. Define the term truncation error.

3. Using 2's complement, how is it possible to get an overflow error.

4. Using 16 bits with a 10 bit mantissa and 6 bit exponent in 2's complement format, find a
number that would cause an overflow error and one that would cause an underflow error.
Make sure you clearly demonstrate and justify why the error would occur.

5. How does Java handle overflow and underflow for either reals or integers?

6. In Java, how would you recommend detecting underflow and overflow in a program for
integers or reals?

••••••••••••••

229

Number Systems

~6~24.:Z BOOLEAN LOGIC
~6g~4.2.1 BOOLEAN OPERATORS

Boolean logic is the basis of the design of the circuits used by computers. These circuits are
constructed of inputs that enter a logic circuit to produce a single output. The logical operation of
the circuits is governed by the rules of boolean logic.

Consider a simple circuit that involves a battery, light, switch and connecting cable.

The light shines when the switch is closed. Conventionally a closed switch is represented by a 1
and an open switch by a O. Further we denote the on state of the light to be represented by a 1 and
the off state of the light to represented by a O. Both the switch and the light are 'two state'
devices. They have only two states represented by a I or O.

We can represent the logic of this situation by use of what is termed a truth table. The first column
represents the possible state of the single input and the second column the state of the output i.e.
'state of the light' .

Switch Light

Open (0) Off (0)

Closed (1) On (1)

Let us consider a case where there are two switches A and B. The circuit with the switches is
shown in the diagram below. The light, denoted by L, is on only when both switches are closed
i.e. A =1 AND B =1. All other combinations result in the light being in the off state. We refer to
the logic displayed by this circuit as the 'AND condition' . Logic circuits are built using
combinations of different standard conditions and we use special symbols to represent that logic.
In this case we refer to the logic circuit as an 'AND gate'. It is termed a 'logic gate' because the
two inputs must pass through the logic of the circuit. The logic can be represented by the
following truth table, which also shows the special symbol used to show an AND gate. In the
AND gate the switches are in series.

L

A
~---11--------'

230

Computer :SCIence

The AND Gate

A B L AND gate symbol

0 0 0

0 1 0 ~=a-L
1 0 0

I I 1

A AND B written as

A.B

As a boolean expression
we have L =A • B

A truth table (shown as columns A, Band L) shows the possible combination of inputs and the
outputs resulting from these inputs after they have passed through the logic of the gate.

The AND gate can also be written using the AND boolean algebra operator to give what is termed
the boolean expression for the AND gate i.e. L = A • B. The dot indicates AND.

The OR Gate

Consider the circuit below. In this circuit, the light is on if either A or B is closed or both are
closed at the same time. This is a fundamental logic circuit referred to as the 'OR gate'. The
switches are in parallel.

L

A

Its truth table is as follows.

A B Output F

0 0 0

0 I I

I 0 1

1 1 1

231

Number Systems

The symbol for the OR gate is:

The boolean algebra operator for OR is the + sign. Thus the OR gate boolean expression is stated
as f = A + B. This is read as f is true when A or B is true.

Note the use of the word 'TRUE' in the above sentence. We refer to the I state as representing
TRUE and the 0 state as representing FALSE. Thus we get a true state from the OR gate in three
ways and only one way when using the AND gate.

The NOT Gate

The NOT gate simply changes the state of an input. Thus if an input is TRUE the NOT gate
outputs the reverse i.e. FALSE. If the input is FALSE the output is TRUE.

The truth table is as follows.

A Not A (written A)

0 I

I 0

The symbol for the NOT gate is as shown: A~ not A

The boolean expression for a NOT gate is to use the bar over the letter denoting the input.

Thus A denotes 'not A' in a boolean expression (Note: A' is also commonly used).

Drawing a truth table for a circuit.

We have three logic gates that we can use and if we use the same inputs into each we can put the
three gates together in different ways to form 'circuits'. The inputs to each circuit are either on the
A input line or B input line. We can run lines off the main input line by using a 'branch'. Thus we
could form a circuit using an AND gate and OR gate leading into a single OR gate. By labelling
the output of the first AND gate as C and the output of the first OR gate as D and labelling the
output of the last OR gate as f, we can trace the logic of the circuit using a truth table.

The logic circuit diagram below shows the circuit for f =(A and B) or (A or B) or

f =(A. B) + (A + B)

A --------.--

B
f

The truth table has two main input columns, A and B. The truth table then has two more columns
representing the outputs from the AND gate as C, and from the OR gate as D. Both inputs from C

232

Computer Science

and D are fed into the last OR gate and the final column denotes the logical output of the entire
circuit that comes out on the final line labelled f.

The truth table is as shown below:

A-B + (A + B)
A-B A+B

A B C +D
C D

F

0 0 0 0 0

0 I 0 I I

I 0 0 I 1

I 1 I I 1

The logic circuit can also be described using boolean algebra to denote the output at line f as:

F =A - B + (A + B)

Thus f is true when the boolean expression is true and this occurs when either A or B is true. Thus
the circuit behaves as the simpler OR gate circuit. This is an important result. Where two circuits
have the same set of outputs for the same set of inputs we can use either circuit, as both circuits
are said to be 'equivalent' or 'equal'. It makes sense to pick the simpler circuit with the minimum
number of gates i.e. the 'minimised circuit' .

EXERCISE 4.14

1. Draw a truth table for the circuit shown below.

A

B f

2. Draw a truth table for the circuit shown below.

A

B f

3. For each of the circuits above, write down the boolean expression as shown in the
example.

4. For each circuit shown, can you determine a circuit that is the same but uses fewer gates?

233

Number Systems

Further logic circuits

There are three other gates that are commonly used and we will consider each in sequence.

The exclusive OR gate XOR

The XOR gate produces a TRUE output only if one of the inputs is TRUE but not if both are true.

The XOR gate is denoted by the ® symbol and by the gate symbol as shown below.

The basic truth table for the exclusive OR is shown below.

A B A®B

0 0 0

0 1 1

I 0 I

I 1 0

We can determine the boolean expression for a certain circuit by looking at the input patterns that
produce a TRUE output. In the case of the'exclusive OR' there are two patterns of inputs for A
and B that produce a true output. The first pattern is not A and B. The second pattern is A and not
B. Putting the two together we can say that we get a TRUE output when:

(not A and B) or (A and not B) is true.

Using boolean algebra symbols we can write the exclusive OR as the boolean expression:

f = A-B+A-j3

The XOR is used to minimise circuit design by using the XOR gate to replace logic patterns that
behave as f above.

EXERCISE 4.15
1. A circuit that is related to the XOR is the 'coincidence circuit'. Draw a truth table for a

situation where a true value is output only when the inputs are the same i.e. A =0, B =0
gives I, as does A = I and B =1.

.......... aaaaaaaaa
The NOT AND gate (NAND gate)

The 'NAND gate' is derived by inverting the output of the AND gate by applying the NOT
operator.

234

Computer Science

The truth table for a NAND gate is shown below.

AandB A and B
A B --

A-B A.B

0 0 0 I

0 I 0 I

I 0 0 I

I I I 0

The logic gate symbol for the NAND gate is shown: ~=---f

In boolean algebra the not symbol is the bar and thus the boolean algebra expression for the

NAND is shown as: A • B

The NOT OR gate or NOR gate

The 'NOR gate' is the inverse of the 'OR gate'. Its basic truth table is shown below and the

boolean algebra symbol is denoted as shown using the bar notation A + B .

--
A B A+B A+B

0 0 0 1

0 I 1 0

1 0 I 0

I I 1 0

The logic symbol for the NOR gate is shown:

EXERCISE 4.16

1. Does A. B = A. B ?

Step I: Construct a logic circuit for A. B .
Step 2: Construct a truth table for the circuit.

Step 3: Construct a logic circuit for A • B

Step 4: Construct a truth table for the circuit.

Compare the final column of each truth table. What do you notice?

235

Number Systems

2. Apply the above method to determine whether or not the logic expressions A+ 13 and

A + B are equivalent.

3. Compare the outcomes of the above circuits to the circuits for the NAND and NOR gates.
Do you notice any equivalences?

............................

~6~.?4.2.2 CONSTRUCTING BOOLEAN EXPRESSIONS
In the examples shown above, we have seen that boolean expressions can be written by collecting
the combinations of inputs that produce a true output. We will see shortly that there exists a range
of boolean logic laws that allow us to simplify these circuits.

Boolean expressions use only the boolean logic symbols and conventions. Some practice is
required to become comfortable with this way of constructing boolean expressions. Some
examples will help.

SOLUTION

This would be written as (A. B) + (A. B) . Note that the brackets can be removed.

SOLUTION

This would be written as (A ® B) • (C + D) (note that the brackets are required here).

© IB0 4 2 ~2004 ••~ DERIVING TRUTH TABLES FROM BOOLEAN
EXPRESSIONS

In this section we firstly introduce the notion of a third input to a logic circuit. In considering a
third input we now have 8 possible input combinations to consider. There are two options for each
input i.e. true or false and this gives 2 X 2 x 2 = 8 (not 2 + 2 + 2 = 6) different combinations of
inputs.

Assume that we had a circuit described by the boolean expression f as shown below:

f = (A • B) + C , which is read (A and B) or C.

This expression has three inputs A, Band C. There are two gates Le. AND and OR and the output
comes from the OR gate.

236

Computer Science

A truth table can be constructed to show the logic of this circuit. Note that the layout of the Os and
Is forms a pattern. You should copy this pattern. By doing this you will ensure that no
combination of inputs is missed or repeated. The final column shows the output.

A B C A-B A-B+C

0 0 0 0 0

0 0 1 0 1

0 I 0 0 0

0 1 I 0 1

I 0 0 0 0

I 0 1 0 1

I I 0 I I

I I I 1 I

We can also construct the logic circuit by noting that there are two inputs into an AND gate. The
output from this gate and the input from C then flow into a final OR gate.

The circuit is shown below.

~=-~f
C--------..J·

Notice also that there are 5 pairs of the three inputs that result in a TRUE (1) output. If we write
these outputs combinations down, we get a complex logic circuit as the boolean expression. This
long expression must be equivalent to the shorter boolean expression from which the truth table
was derived. Note that each term in this type of boolean expression is referred to as a 'minterm'.

The longer expression is:

and is known as a 'sum of products' form. This expression must be equivalent to: f = (A - B) + C

EXERCISE 4.17
Construct truth tables for the following boolean expressions

1. f = (A + B) + (A - B)

2. f=A-B+A-C

3. f = A. B+ B • C + C• A

4. f = A. B + B • C + A• B

...................
237

Number Systems

~A~'? 4.2.4 SIMPLIFYING BOOLEAN EXPRESSIONS
The aim of circuit building is to build circuits that have the minimum number of gates. In the
above situation the longer expression has six AND gates, three NOT gates and one OR gate. As
compared to the shorter equivalent expression that has two gates. Obviously the latter is to be
preferred.

The process of reducing the complexity of a circuit by reducing the number of gates is referred to
as MINIMISATION.

There are two ways of approaching minimisation. The first way is to apply the rules of boolean
algebra to minimise the boolen expression. The second alternative is to use Kamaugh maps.

The laws of boolean algebra.

Commutative laws

A+B=B+A

A-B=B-A

Associative laws

A + (B + C) = (A + B) + C

A - (B - C) = (A - B) - C

Distributive laws

A- (B + C) =A - B +A. C

A + (B - C) = (A + B) - (A + C)

Tautology laws

A-A=A

A+A=A

A+ A = I

A - A =0

Absorption Law

A + (A - B) =A

A - (A + B) =A

Identities

0- A=O

O+A=A

A+ 1 = 1

238

Lompmer ~clence

l-A=A

A=A

Complement

A+ A -B= A+B

EXERCISE 4.18
1. For each result above, show that the equivalence is true by drawing a truth table.

2. Show that the following equivalence is true by drawing a truth table.

A + B • C = (A + B) • (A + C)

3. Show that the following equivalence is true by drawing a truth table.

A. (B + C) = (A • B) + (A • C)

4. Show that A + A - B = A + B

5. ShowthatA-(A +B)=A-B

sssss •••••••••
More difficult worked examples.

SOLUTION

Use the commutative law to rearrange to get: A - B + A - B + A - B

Use the distributive law to get: A - (B + B) + A- B

Use the inverse law (x + x = 1) to give: A + A- B

Use the complement law to give: A + B.

A technique commonly used to add some extra terms relies on the fact that A + A = A. This often
allows factorizing that leads to simplification.

239

Number Systems

SOLUTION

Let us add A • B • C between the 2nd and 3rd terms and the 3rd and 4th terms and then factorise.
We now have:

We can now group each pair of terms and use the fact that x + x = I to minimise.

B • C • (A + A) + A • C • (B + B) + A • B • (C + C)

This gives B • C + A • C + A • B, which is an equivalent minimised circiut.

EXERCISE 4.19

1. For each of the examples above, show that the minimised circuit is equivalent to the
original circuit by completing a truth table .

....................

De Morgan's Laws

In some of the previous exercises you explored De Morgan's Laws. Here we state them formally.
De Morgan's Laws are useful results that can often be used to simplify boolean expressions.

De Morgan's Laws: A + B =A • B and A • B =A + B

To apply De Morgan's laws, follow this simple algorithm

1. Take a term e.g. A • B

2. NOT the individual members of the term e.g. A • B

3. Change the operator i.e.• to +, or + to. i.e. A + B

4. NOT the entire term i.e. A + B

240

Computer Science

SOLUTION
Note: we have two separate compound terms, which we treat as single terms.

Step 1: NOT the terms to get (A - B) + (A + B)

Step 2: Change OR to AND to get (A-B) - (A+B)

This reduces to A-B + A-B i.e. A-B

Step 3: NOT the lot to get A- B

We can confirm this result by use of a truth table

A

o
o

B

o

o

A

o

o

o

o

1\e13

o

o

o

1

o

f

1

o

A-B

o
o

o

A-B

o

Note that the last column matches the output column f, which shows that the two boolean
expressions are equivalent.

EXERCISE 4.20

1. Using truth tables confirm that De Morgans's Laws are true for both basic cases.

2. Use De Morgan's laws to simplify the circuit: f = A + B - C.

••••••••••••••
Equivalence circuits

Consider the following circuit that uses a NOR gate and only one input, A.

A~f

241

Number Systems

The truth table for this circuit is shown below.

--

A A AA A-A

0 0 0 I

I 1 1 0

This circuit is equivalent to NOT A.

Consider this grouping of NOR gates with inputs A, B, C and D.

f

The truth table is as shown below. If you look at the last column you will see that it is equivalent
to an AND gate.

A B C D f

0 0 1 1 0

0 I 1 0 0

I 0 0 I 0

1 1 0 0 1

EXERCISE 4.21

1. Construct a truth table for the following circuit and write down a circuit that it is
equivalent to.

A

B

f

2. Use De Morgan's Laws to show that the equivalence result is true.

3. Construct a truth table for the following circuit and write down a circuit that it is
equivalent to.

f

••••••••••••••
242

Computer Science

Karnaugh maps

Karnaugh maps (hereafter termed K-maps) are a visual depiction of the logic of a circuit. They
are useful because we can use them to group minterms together that have common elements
which allows us to remove the other terms. This is done by grouping minterms into even number
groups of cells by rows or columns, but not diagonally. We can group from the end of row one
back to the start. The flat table is actually a cylinder folded out. When the groupings are made we
look for common elements.

An example will help explain. In a three input circuit there are 8 possible inputs. Thus, in a K­
map there are 2 rows and 4 columns, which gives 8 cells. The row labels are A and NOT A. The
column headings are then BAND C, NOT BAND C, B AND NOT C, NOT B AND NOT C.

A basic K-map of three inputs (variables) is shown below.

A

A

BeC

o

o

BeC

o

o

Bee

o

o

Note the placement of the Is and Os.

The corresponding truth table would look as shown below. Note the location of the 1s in the
output column and their location in the K-map.

A

o

o

o

o

1

B

o

o

o

o

C

o

o

o

o

Output

o

o

o

o

o

o

Miniterm

AeBee

From the truth table, the boolean expression is: f = A e B e C + A e B e C

From the K-Map we can circle the first column because B e C is common. Thus, the circuit can

243

Number Systems

be reduced to: f =B e C. This result is consistent with the algebraic approach in that by use of
boolean algebra we have:

f = AeBeC+AeBeC

B eC(A+A)

= B eC

Other standard minimisations are shown with the following series of examples.

A

A

Bee

o

o

o

o

This shows f =C as it is common to all cells.

A

A

This shows f =A as it is common to all cells.

A

A

This shows f = A e C + A e e

A

This gives f =C + A e 13 e e

244

Computer Science

SOLUTION

A

o

o

o

o

B

o

o

o

o

C

o

o

o

1

o

f

o

o

o

o

miniterm

AeBeC

As a K-map we have

A

A

Bee

o

o

o

o

From the K-Map we can circle the Is and see that C is common. Thus the equivalent circuit is
f=C.

Ifyou look at the truth table you can see this is the case as we get a 1 if and only if C is true. Thus
it is irrelevant what the other inputs are.

By applying the rules of boolean logic to the first equation we can show that the circuits are
equivalent.

245

Number Systems

f=AeBeC+AeBeC+AeBeC+AeBeC

= A e C e (B + B) + A e C e (B + B)

= AeC+AeC

= C e (A + A)

= C which is shown in the K-map

EXERCISE 4.22

1. Use a K-map to simplify the following truth table.

B -C B -C B -e B -e
A 1 1 1 0

A 1 0 0 0

a. Write down the full boolean expression.

b. Now simplify this expression using the K-map.

c. Show that the full boolean expression can be reduced to the minimised form. (Hint:
you may have seen this earlier!)

~6~.? 4.2.5 CONSTRUCTING LOGIC CIRCUITS FROM BOOLEAN
EXPRESSIONS

The HALF adder

If we consider the adding of two binary bits we can see that there are four specific combinations.
In base 2 we have the following:

0+0 = 0 or 0 + 1 =1 or 1 + 0 = I or I + 1 = 0 with a carry of 1.

Such a system can be described as a logic circuit with input for bit I (A) and bit 2 (B) and two
outputs Sum (S) and carry (C). A block diagram is shown below.

Bit 1
Bit 2 ----I:~[Half add logic

246

:
Sum

f----__~ Carry

Computer Science

From these rules we can determine a truth table as shown below

Bit 1 Bit 2 Sum Carry

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

The circuit is in fact two separate circuits combined.

The sum is an XOR and the Carry as an AND gate. Thus the boolean expression for the sum is
given by:

f=AeB+Aei3

f=A®B

(1)

(2)

The circuit for (I) is shown using two NOT gates, two AND gates and one OR gate. This circuit is
simplified by using the XOR gate symbol as shown below.

The boolean expression for the carry is simply an AND gate with inputs from A and B.

Putting the XOR gate and AND gate together we have the logic circuit for the adding of two bits.

A diagram is shown below.

:::~---tt:f---::
The FULL ADDER

The full adder must take into account the possibility of a carry coming in as well as going out.

Hence there are three inputs: bitl(B), bit2(C) and carryIn(A) and two outputs sum(S) and
CarryOut(Cl).

carryln (A) :1Bit I (B) ----tI~ Full add logic
Bit 2 (C) ----I-~..

247

:
Sum (S)

I-----II~ CarryOut (C I)

Number Systems

A truth table can be constructed as shown below.

A B C S CI

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Reading from the truth table we can derive the boolean expression for both Sand Cl as:

S = A. B • C + A• B • C + A • B • C + A • B • C , which reduces to

S = B ® (C ®A)

C 1 = A. B • C + A • B • C + A • B • C + A • B • C , which reduces to

Cl =A-B+A-C+B-C

The logic circuit for each can now be drawn and is shown in the diagram below.

CarryOut

Sum

B

A-------r--~

C

MINIMISATION PROOFS
Boolean Algebraic Proofs for the Minimisation of the Sum (S) and CarryOut (C I) boolean
expressions.

CARRY CIRCUIT MINIMISATION

CI = A·B·C+A·B·C+A·B·C+A·B·C

Add in two more A . B . C terms and group as shown:

248

Computer Science

CI = B·C·(A+A)+A·C·(B+B)+A·B·(C+C)

CI = B·C+A·C+A·B

SUM CIRCUIT MINIMISATION

S = A· B . C + A . B . C + A . B . C + A . B . C (1)

S = B xor (C xor A) = B . (C· A + C· A) + B . (C . A + A· C) (2)

Step I: Taking minterms 1 and 3 from equation (1) gives

A· B . C + A· B . C = B . (A· C + A· C) ,which corresponds to the first minterm in (2)

Step 2:

Minterms 2 & 4 from (1) must be equivalent to the second term of (2)

Grouping the 2nd and 4th minterms form (1) gives:

A· B· C + A· B· C = B· (A· C + A· C)

The B terms match.

Now apply De Morgan's Law to (A· C + A . C)

A . C gives A + C and then not the lot to give A + C

A . C gives A + C and then not the lot to give A + C

This gives A + C + A + C and we apply De Morgan's Law again.

(A + C) . (A + C) and NOT the lot to get:

(A + C) . (A + C) which gives (A· C + A . C)

Adding in the B terms we get the term we require B . (A· C + A· C) ,which matches the

required miniterm (QED)

~~?4.2.6 CONSTRUCTING BOOLEAN EXPRESSIONS FROM
LOGIC CIRCUITS

This is the process of reversing what we have been doing.

A boolean expression such as f =A • B + (C + B) states the following:

There are three inputs A,B and C

One AND gate for A AND B

249

Number Systems

One OR gate for C OR B

One OR gate which accepts input from the above mentioned and gate and or gate.

To build the circuit, start by drawing the first AND gate:

Now add the third input C and take a line from B and run them through an OR gate.

To complete take the outputs from both gates and run them through a final OR gate. The final
circuit is shown below.

The above discussion shows how to derive a logic circuit from a Boolean expression. To construct
a Boolean expression from a logic circuit you apply a similar deconstruction-construction
technique.

In the logic circuit we note the following:

(a) there are three inputs
(b) Three logic gates: an AND, and two OR gates.
(c) The second OR gate accepts inputs from the other AND and OR gate and produces

the output on line f. We have two sub-circuits leading into the final OR gate.

This last point gives the basic template structure i.e. sub-circuit! OR sub-circuit 2

We now work out what each sub-circuit is made of.

Sub-circuit I is A AND B ie A. B

Sub-circuit 2 is A OR B ie A + B.

Thus, filling out the template we have A • BORA + B.

Finally we have (A • B) • (A + B)

250

Computer Science

© IBO 4.2.7 EXPLAIN THE FUNCTION OF SPECIFIC CIRCUITS
2004

SOLUTION
Truth table

The inputs to the truth table form a 3 bit pattern Le. 0,0,0 represents decimal 0 and 1,1,1
represents decimal 7.

decimal A B C f

0 0 0 0 0

1* 0 0 1 1

2 0 1 0 0

3* 0 1 1 1

4* 1 0 0 1

5* 1 0 1 1

6 1 1 0 0

7* 1 1 1 1

Full boolean expression:

f =(A. B • C) + (A • B • C) + (1\ • B • C) + (A • B • C) + (1\ • B • C)

As a K-Map we have.

A

..­....
From this, we can see that the circuit minimises to f = C +A • 13 • c.

251

Number Systems

The logic circuit is therefore as shown below

B-----' f

A------------

c----L----------------'

The minimised circuit can be shown to be equivalent by the following process.

f=AeBeC+AeBeC+AeBeC+AeBeC+AeBeC

= Be C e (A + A) + Be C e (A + A) + A e Be C

= BeC+BeC+AeBeC

= C(B + B) + A e Be C

C+AeBeC

EXERCISE 4.23

1. A house alarm is located in a hallway. It sounds if power is on and either movement is
detected or a sound is detected in the hallway.

a. What are the inputs to this logic system?
b. How many gates are required?
c. Construct a truth table.
d. From the truth table, construct a full boolean expression.
e. Is the boolean expression in minimised form?
f. Construct a logic circuit.
g. Test that the logic circuit is correct by checking using a truth table.

2. A robot is controlled by two motors that drive two wheels. When the left motor is on and
the right motor off, the robot turns right and the reverse to turn left. The robot has three
sensors used to detect the proximity of things around it. Assume that the robot is moving
forward. If the robot detects something blocking its path on the left it turns to the right and
vice versa. If the robot senses something in front, it stops. Otherwise it moves forward.

a. Draw a truth table for the control of the robot by the motors.
b. Derive and simplify a boolean expression from this truth table.
c. Draw a logic diagram for one of the motors .

••••••••••••••

252

•Chapter contents

5.1 Terminology
5.2 Static data structures
5.3 Dynamic Data Structures
5.4 Objects in problem solutions
5.5 Recursion
5.6 Algorithm evaluation

•

253

computer :science

Advanced Data Structures and Algorithms

This chapter covers the material in Topic 5 ofthe HL IE Computer Science Syllabus. The chapter
follows the syllabus in the exact order it is specified and begins with a discussion of terminology.

~6~,?5.1 TERMINOLOGY
~6~'? 5.1.1 DEFINITIONS

Identifier: an identifier is a name given by a programmer to represent a variable, class name,
method name, data type or any other element defined within the program.

Operand: an operand is a name given by programmers to represent named memory locations and
objects that will be manipulated by the program. For example, a variable is an identifier that is
also an operand as it names a memory location. For example S + 45 contains the operand S,
which is a variable, and 45. Another way to think of an operand is 'that to which an operation is
applied' i.e. Sand 45 have the addition operation applied to them.

Operator (unary and binary): operators indicate the action to be applied to operands in an
expression. Thus, an operator is a character or string of characters which designate an operation.
Operators can be classified e.g. arithmetic operators indicate the normal operations of arithmetic:
+ (plus), - (minus), / (division), * (multiplication); Boolean operators include: not, and, or, xor.

Unary Operator: special operator that requires only one operand e.g. negation in boolean
expressions or ++x in C and Java programming languages.

Binary Operator: operator that requires two operands e.g. + when applied to two operands x + y.

Actual parameter (Argument): a data value passed between a calling program segment and the
called segment. When a method is called, you often give the method some data either as a
constant or as a variable e.g. sin(x). The quantity inside the brackets is referred to as an argument,
hence the term 'method's arguments'. Many methods require more than one argument and hence
the term argument list e.g. calc(xj,t,y). The list xj,t and y make up the argument list.

Formal Parameter: refers to the variable names in the method or class declaration header e.g.
public int calc(int a, int b, String v). In this case the variables a, b and v are parameters of the
method calc. The parameters of the method get their values from the arguments of the method
call. Parameter values can be passed-by-value. The values of the arguments are passed or copied
to the parameters of the method, Le. the argument values initialise the parameter variable.

In Java, the values of primitive data types such as int and double are always passed-by-value. Any
changes made in the called method are not made to the original data values as they are completely
separate memory locations.

In Java the value of an object's reference is also passed. In the IE and JETS this is interpreted as
the equivalent of pass-by-reference.

The difference between pass-by-value and pass-by-reference is that in pass-by-reference the data
values are not copied, rather the original locations are referenced. Hence, if these are changed,
they are changed in the original locations.

In Java the value of the object reference is passed e.g. when passing arrays, Java classes or user
defined objects. This acts like pass-by-reference. Primate data types can't be passed using pass­
by-reference in Java, however, wrapper classes such as Integer() can be used if this feature is
desired.

254

Computer Science

In the following example we have a method called equation defined, that is called, and a value is
returned and assigned to the variable p.

PARAMETER PASSING EXAMPLE
Line numbers have been added to aid the explanation.

1. int x=10, y=2, p=O;
2.intn[] = {23,34,12}
3. int p = equation(x,y,n)
4. String outline = "value of p
5. output (outline)

"+p+" Value of ~ ~ "+n[y]) ;

m = b + m;
c[b] m + b;

return m;

6. int equation
{

7.

8.
9.

}

(int m, int b, int c [])

Explanation of the example.

At line 3 the method equation is called and the argument values of x,y and the array reference
value are passed. Note that arrays are 'objects' and not 'primitives' in Java.

At line 6 the following happens:

The value of variable x is assigned (copied) to initialise the parameter m in the method. Thus a
holds 10.

The value of variable y is assigned to initialise the parameter b in the method. Thus b holds 2.

The value of the reference of array n[] is passed to the array variable parameter c. Thus c[]
references the values {23,34,12}.

At line 7 the method variable m is assigned the value 2 + 10 i.e. 12.

At line 8 c[2] is assigned the value 12 + 2 = 14. As this is a reference the value of n[2] back in the
calling part of the program is also changed! The array values of n[] and c[] are {23, 34, 14}.

At line 9 the value of m i.e. 12 is returned and assigned to the variable p at line 3.

At line 5 the following is output: value ofp =12. Value of n[y] =14.

Infix notation: An infix notation is a notation for representing operations where the operator is
placed between the two operands. It is to operate on e.g. a+s+(t*y). It is the normal way that
equations in mathematics are written and evaluated.

Postfix notation also known as reverse polish notation. A postfix notation is where each pair of
operands is followed by its operator. e.g. xy+c* is equivalent to the infix notation (x+y)*c.

Prefix notation: A prefix notation is where each pair of operands is preceded by the operator. e.g.
*+xyc is the prefix equivalent of (x+y)*c.

255

Advanced Data Structures and Algorithms

EXERCISE 5.1

1. Using your chosen computer programming language list some examples of an identifier.

2. In the following expressions, state the operators and operands used.

c = (t+y)--4*a+b

d= ++c*(d-t)

3. In the above expressions, state the binary and unary operators used.

4. In the following function call and definition, state the following:

a) the function identifier name.
b) the arguments.
c) the formal and actual parameters.
d) which variables are passed by value and which are passed by reference.

int fred (int a, int b, int d[])

{

int c = 0;
for (int i=O; i<d.length; i++)

if (d[i] >a && d[i] <b)
{

c = c + 1;

return c;

The call to method is as follows: note f =10 and d ={23 ,67,12,45}.

output ("Result = "+fred(f, 20, d))

e) What is output?
f) Was it necessary to actually return the value of c? If not why not?

5. In what format is this expression: (a*c)-(d/23) ?

6. What type of format is reverse polish?

7. Change the expression (a*c)-(dI23) to reverse polish format?

8. Write the following expression in postfix and then prefix format.

x*y+(c-j)*g
s+f-a*f+e/f

9. Evaluate this expression, which is in postfix notation: 23 14 + 12 12/ +

10. Convert the following from reverse polish to infix notation

xy+c*

256

©IBO 5.1.2
2004

Computer Science

xyu++a*
2xyz- +*fg-2/

................ aa

DEFINITION OF A STACK, QUEUE AND BINARY
TREE.

Recall that a data structure defines the way the data is organised in the computer's memory so that
it can be conveniently accessed and processed by the program. In Chapter I you were introduced
to the notion of a LIST data structure i.e. an array. In a LIST data structure the data is stored in a
sequence and is of the same data type.

In this section we introduce three separate LIST data structures, the stack, the queue and binary
tree, which are all very useful and which behave in different ways.

STACK DATA STRUCTURE
Think of a simple pile of plates. Normally you place a plate onto the pile at the top and also
remove a plate from the top.

Another simple every-day example is that of a pile of coins. Take 10 coins and place them one on
top of one another. You will notice as you add coins to the pile you do so by placing the next coin
on top of the last coin i.e. on the TOP. If you remove a coin you can only do so from the TOP
without either splitting the pile or possibly causing it to topple over!

Such a pile of coins or plates can be thought of as a STACK.

A stack is a data structure with the following characteristics:

• Data is pushed onto the top of the stack in the same way that plates are stacked on a table.

• Data is removed from a stack by taking off the top element. Data is said to be accessed in a
Last In First Out (LIFO) manner. Continuing our plates stack example, we can only access
the top plate and to get access to any other plates we must remove those plates that are
stacked on top.

• A stack pointer variable is used to point to the next free space in the stack.

• Stacks implemented using an array have a fixed maximum size that cannot be exceeded.

• Stacks implemented as linked lists, which are dynamic are limited only by the available
memory.

• It is illegal to try to PUSH onto a full stack and to POP from an empty stack.

sp

Figure: 5.1- Stack (LIFO)

POP(X) - remove
from stack

sp free

sp free

257

PUSH(X) -push onto
top of stack

~
sp free

Advanced Data Structures and Algorithms

QUEUE DATA STRUCTURE
Next time you line up at a service counter of some kind, such as an ATM or customer service
counter, you are joining a queue. The queue is also a LIST structure, but it has different
characteristics from the stack. In a queue, items are added to the tail of the queue not to the top, as
is the case with a stack. Things are removed, or serviced, from the head of the queue.

A queue is a data structure with the following characteristics:

• Data is added to the end of the data list in the same way that you queue in line at a service
counter.

• Data is removed from the front of the queue. We say that data is accessed from a queue in a
First In First Out (FIFO) manner.

• A queue head and tail variable is used to point to the current head or tail of the queue.

Queues implemented using an array have a fixed size which cannot be exceeded, otherwise
an error will occur.

• Queues implemented using a dynamic linked list are limited only by available memory.

• It is illegal to try to remove data from an empty queue or to add it to a full queue.

Remove from front of
queue

~ II -1'
~A+-~

Service
Counter

Queue

r-dz-dr-d
Add to end of

queue

.-r-d

It is common to view queues that are implemented in a static
array as a circular structure. Two variables are used to keep
track of the head and tail of the queue.

The circular view of a queue requires that two properties are
monitored.

I . If the head is made equal to the tail of the queue after an
item is removed, the queue is empty.

2. If the tail is equal to the head after an addition, the
queue is now full.

OPERATIONS ON STACKS AND QUEUES

I 2 345
I I I I

as a circle .

We can add and remove from both a stack and a queue. But there are some efficiency processing
problems associated with how we actually store the queue as a static array. At this stage this is the
only way you know of storing a list, as an array.

We can implement a stack easily using an array and a pointer to the head or top of the list. As
items are added we incur an insertion to the list and an update to the head pointer. As we remove,
we incur an access to the list to get the data item and then a decrement to the head pointer.
However, this is not the case with a queue if we use an array.

258

Computer Science

EXERCISE 5.2

1. Define the data structure referred to as a stack.

2. Define the data structure referred to as a queue.

3. We are going to undertake these operations on a queue: A = Add and R=Remove.

Assume the queue is an array and it contains only three (3) places and is called
QUEUE[index]

Assume that we fix the head of the queue to be always the first element in the array. i.e.
QUEUE[O]

Trace the following operations and draw the state of the queue at each stage.

A 12, A 13,A,23,R,R,

4. What inefficient processing occurs at each stage by implementing a queue as a simple
linear structure? How might you overcome these problems?

.......................
DEFINITION OF A BINARY TREE
A binary tree stores data in nodes that allow branches to the left or right according to a greater
than or less than type rule. For example, if storing integers in nodes of a binary tree, the left
branches holds integers that come before the current integer and the right branch holds integers
that are greater than the current integer.

A binary tree allows lists of data to be searched efficiently in a similar way to that of a binary
search. It allows efficient searching of a list stored as a sorted array.

Binary trees are used in a range of applications such as:

Storing of a file index in RAM to enable a randomly organised file to be directly accessed using
the key as an index into the relative record position of the record in the file.

Further details about Binary trees are covered in the dynamic data structures section.

~6~,?5.1.3 USES OF STACKS
The primary use of a stack is to keep track of things in the order that they occur so that you can
reverse back through them to get back to where you started.

A stack data structure is used by web browsers to keep a current list of the sites visited. If you
view this list on your browser, it is a stack. The last site visited is on top of the list and the first site
you visited will be last. When you click the back button you are causing a POP operation and the
web address on top of the stack is taken off and accessed. When you click on a new site, the site
you are leaving is PUSHed onto the 'sites visited' stack.

Some other common uses of stacks are:

1. Parameter storage and subprogram return addresses.

When a program calls another program or function, the called function can also call another
function. When the first program is called, the current program needs to be temporarily suspended
and its return address and the values of the parameters it is using kept so they can be used when

259

Advanced Data Structures and Algorithms

the called function returns. To do this, the return address and the contents ofthe parameters are
placed onto a stack in memory. As subsequent calls are made, the next return address and set of
parameters are PUSHed onto the stack.

When a function stops executing, the return address is POPped off the stack and the program
continues. This chain of events is represented below. It shows program 1 calling function 1, which
calls function 2, which then calls function 3.

The return address of the program is placed onto the stack and then, as the other functions are
called, their return addresses are added to the stack.

Program 1
Call Function 1 //Push return address of Program 1 onto stack

Call Function 2 //Push return address of Function 1 onto
stack)

Call Function 3 //Push return address of Function 2 onto
stack)

End Function 3 return
//Pop function 2s return address from stack)

End Function 2 //Pop function ls return address from stack)
End Function 1 //Pop return address of Program 1 from stack)
Continue process in program 1

2. Interrupt handling

Interrupts work in the same way. When the CPU detects interrupt operations, the current state of
the computer must be saved. The contents of variables and return address are placed onto the
stack. When the interrupt has been handled, the computer returns to where it was by popping the
data from the stack.

3. Evaluation of arithmetic expressions

One of the reasons that reverse polish or postfix notations are used is because they can be
evaluated using a stack. An example of a reverse polish calculator is shown later in the text.

A simple example will demonstrate the point. Consider the list 12,23, + and assume this is in a
stack with the + at the top

If we POP the top item we can determine that it is an operator. We now know that the next two
POP operations must give us two numbers, which we will add. This is processed using the notion
of a stack.

~6~25.1.4 USES OF QUEUES
The primary use of a queue is to ensure that the service that is being queued for is given first to
those that joined the queue first. When you queue in a customer service line you expect to be
served in the order in which you have joined the queue i.e. the person in front of you will get
served before you do.

Some examples of how queues are used in computer science are now briefly discussed.

1. Keyboard queue: the keyboard buffer into which characters are stored as they are
pressed, operates as a queue. The first letter typed is the first letter sent. Thus, as
subsequent letters are typed they are added at the tail of the buffer.

260

Computer Science

2. Printer queues: Printers on a LAN are a shared resource. However, the way they are
managed is by queuing requests in a printer queue. A print queue stores the requests as
they arrive and hence operates as a 'first request printed first' queue. The print queue on
your PC also operates this way. If you ask for four things to be printed and view the print
queue it will show the names of the print jobs in the order they were requested with the
first one requested being on the top or head of the list.

3. Customer queue simulations: Have you ever wondered why supermarkets have the
number of check operators they do at a particular time or why the traffic lights change at
certain time intervals? Check outs and traffic lights are good examples of queues. The aim
is to minimise the wait time in the queue, but also to minimise the number of queues
needed, to keep costs down. However, the gap between arrivals to join the queue varies.
The aim is to maximise service standards but minimise cost. At times the arrival rate is low
per time interval and at other times the rate is high i.e. 'off peak time' and 'peak time'. To
work out how often to change lights and how many counters to operate in supermarkets,
computer programs are written to simulate the arrival rates and service times for members
in the queue. In this way the optimal number of open counters required, and the optimal
time interval for lights can be estimated.

EXERCISE 5.3

1. Explain how a stack could be used when a program that contains procedures and functions
is executing.

2. Assume that there are three procedures: PROCl, PROC2, PROC3. Within PROCI a call is
made to PROC2 and within PROC2 a call is made to PROC3. Explain how a stack can be
used to ensure that when PROCI calls PROC2 the program is able to keep processing
when these series of calls have been completed.

3. A system programmer has been asked to write a utility program that will allow people to
see what jobs are waiting to be printed. Explain why a certain type of data structure would
be more suitable than other possibilities .

© IB0 5152004 ••

• •• • • • • • • • • •• •
DISCUSS THE FEATURES AND APPROPRIATE
USAGE OF BINARY TREES.

Binary trees can be used for a range of purposes. Some of these are listed below.

• Storing index keys to enable indexed access to a file.

• Storing mathematical expressions to enable evaluation using reverse-polish.

• Storing file directory structures to enable searching.

Storing decision trees.

• Storing any set of data that needs to be searched efficiently.

• Store a physical list of data so that the data can be retrieved in sorted order.

The key feature is that the data can be accessed using one of three traversal techniques. These are
outlined in section 5.3 .12.

261

Advanced Data Structures and Algorithms

EXERCISE 5.4

1. Develop a list of further applications of binary trees.

2. Explore the use of binary trees in graph theory.

3. Select one application of a binary tree you have discovered and discuss the reasons why
the binary tree is the appropriate data structure for the application .

.......................
~6~,?5.2 STATIC DATA STRUCTURES

The most commonly used static data structure is that of the array, which was introduced in
Chapter 1. A static structure allows lists of data of the same type to be stored and accessed via an
index that specifies the position of the data in the list. Thus, an advantage of storing data in a
static array list is that individual data elements can be accessed directly without reference to other
items in the list provided that the index position of the required data item is known. However a
disadvantage is that the length of the list cannot be extended during the running of the program.
This means that static arrays have to be dimensioned to take into account the likely maximum
size of the list prior to program execution.

A range of search and sort operations can be performed on static array lists of data. We have
already discussed a range of sorting techniques and searching techniques in Chapter 1.

It is important that lists can be sorted efficiently. In this Chapter we will firstly consider a very
efficient sorting technique called the 'Quick Sort'.

We will then consider the problem of how to access items in a list if the index position is not
directly known. The method used is to convert a key, such as a name, into an index position,
which can then be used to retrieve the desired data item. This technique is referred to as
'hashing' .

~6~'? 5.2.1 - 5.2.2 QUICK SORT
The quick sort algorithm presented here uses recursion. Readers are advised to cover section 5.5
on recursion before attempting this section.

The quick sort operates very efficiently for large lists. It applies a 'divide and conquer' problem
solving strategy.

The basic idea is this:

• Pick the middle value and call this the 'pivot' .

• Start at each end of the list by using a left and right pointer.

• Move those values that are less than the pivot to the left of the pivot.

• Move those values that are greater than the pivot to the right of the pivot.

• Stop. At this point the pivot is in the correct place. And the list is now partitioned into two.

Pick the left hand partition and apply the procedure again and again until sorted.

• Move the right pointer to the midpoint and retain the left pointer. Recalculate the mid point
and repeat. Repeat until only one value is left in the partition.

• Pick the right hand partition and apply the procedure again and again until the list is sorted.

Repeat as above.

• List is sorted.

262

int pivot, left, right, temp;
left start;
right = finish;
pivot = arra~ (left+right)/2]
while (right> left)

Lompmer ;:)clence

An algorithm for the quick sort is shown below.

Points to note are:

Mid point is chosen as the PIVOT value

There are two recursive calls one for the left and one for the right of the pivot.

A trace using the algorithm is shown on the following page. The array used is:

10,4,8,1,7 these values move through this sequence

7,4,8,1,10

7,4,1,8,10

1,4,7,8,10

void quickS (int start, int finish, int [] array)
{

1

2

3
4

5

6
7
8
9
10
11

while (arra~ lef~ < pivot) {left = left+l;}

while (pivot < arra~ right]){ right = right-I;}

if (left<=right)
{

if (left<finish) quickS (left, finish, array);

}

if (start<right) quickS (start, right, array);

12
13
14
15
16
17
18
19
20
21
}

temp
array[left]
array[right] =
left = left +
right = right

array[left] ;
array[right]
temp;
1;
- 1;

TRACE OF THE QUICK SORT ALGORITHM
Note: A trace of a quick sort is difficult because of the recursion. When you trace, be aware of
when recursive calls are made.

263

Advanced Data Structures and Algorithms

In the table below:

(a) S=Start, F=finish, P=pivot, L=left, R=right, T=temp, D[LJ=data[leftJ,

D[RJ=data[rightJ, D[] = contents of the array

(b) The condition flags the result of the while or if condition check as true or false

Line S F P L R T D[L] D[R] D[] Condition

call I 5 1O,4,S
,1,7

2,3,4 S I 5

5 True

11 I 5 True

12 1
0

13 7

14 10

15 2

16 4 7,4,S,
1,10

IS Loop line 5

5 True

II 3 4 True

12 S

13 1

14 S

15 4

16 3 7,4,1, L<S,R>S
S,IO

IS Loop line 5

5 False

19 1 5 4 3 True

Call
quicksort(l ,3
,data)

call 1 3

2,3,4 4 1 3

264

Computer Science

5 True

II I 3 True

12 7

13 1

14 7

15 2

16 2

18 Loop line 5

5 False

19 1 3 2 2 True, call

quicksort(1,2
,array)

call 1 2

2,3,4 I I 2

5 True

11 I I True

12 1

13 1

14 I

15 2

16 0 1,4,7,
8,10

18 Loop line 5

5 False

19 False (note L=2
F=3 after
recursion! !)

21 True Call

quicksort(2,3
,data)

call 2 3

2,3,4 4 2 3

5 True

1I 2 2 True

12 4

265

Advanced Data Structures and Algorithms

13 4

14 4

15 3

16 1 1,4,7,
8,10

18 Loop line 5

5 False

19 False (note: L=4,
F=5 after
recursion)

21 True Call

quicksort(4,5
,data)

call 4 5

2,3,4 8 4 5

5 True

11 4 4 True

12 8

13 8

14 8

15 5

16 3

18 Loop line 5

5 False

19 False

21 False

We are finished. This is a difficult trace and you need to be very careful when checking the path of
the recursive calls. You might like to code the algorithm and put output statements in appropriate
places to output key values and check the above trace.

EXERCISE 5.5

1. Use the quick algorithm shown above to perform a trace to show how the following list
would be sorted: 6,23,4,56,2.

2. Find another version of the quick sort and perform a trace to show how it operates.

266

Computer Science

© IBO 5.2.3 CONSTRUCTING HASH TABLES
2004

As mentioned in the introduction to this section an advantage of a static array is that the data
elements can be accessed directly via the index. However, if you do not know the index, you need
to search the array. Using a linear search is slow and to use a binary search the list needs to be
constantly sorted, which takes up computer resources. One way to overcome this problem is
'hashing' .

Generating hash codes

Data stored in a 'hash table' is accessed by applying a mathematical function to a data value
stored in the table so as to get its address or index in the table. The table is an array data structure,
thus the value returned by the hash function is the array index position.

Mathematically we say 'index =hash(key)'.

Let's say we wish to store a set of eight 'three letter product codes' in an array. The data in the
array would act as a look up table. To gain access to the codes we could use a linear search, which

would take on average ~ =4 array accesses to locate the desired name and the worst case would

be 8 accesses. An improved way would be to somehow calculate the array index from the code.
Whilst there is some processing overhead in calculating the index it is usually faster than a
sequential search, especially as the list increases in length.

One way to generate the index value would be to convert the code to the ASCII sum of its letters.
By then performing modulo division using a divisor of 8 we would get remainders that range
from 0 to 7. These remainders would act as indexes for an array with 8 elements.

The following algorithm produces the hash table. The table is shown following the algorithm.

public class hash
{

public static void main (String args[])
{

String [] C ={ "asd", "wer", "ert", "rty", "tyu", " erf" f "ghj", "yui "}

new public hash(c);

public hash (String codes[])
{

int ht=O;
char ch;
String st;
output("Code\tHash Total\tHash Value(key)");
for (int i=O; i<codes.length; i++)
{

st = codes[i] ;
for (int j=O; j<3; j++)

ch st.charAt(j);
ht ht + ch;

}

output (codes[i] +"\t"+ht+"\t\t\t"+ ht%8);

267

Advanced Data Structures and Algorithms

ht = 0;

The output from this algorithm is as follows:

Code
asd
wer
ert
rty
tyu
erf
ghi
yui

Hash Total
312
334
331
351
354
317
313
342

Hash Value(key)
o
6
3
7
2
5
1
7

The table shows the hash totals and the hash keys. You can check these by either using the
program or using the ASCII code table. We will work out one code as an example.

The code 'asd' has the hash total = 97 + 115 + 100 = 312.

This then converts to the hash key of 312 mod 8 = 39 remainder 0 = O.

What we want is for the hash function to spread the index values out evenly over a range of values
so that there are no clashes Le. two codes having the same hashed value. In this example the hash
table requires at least 8 locations. However, we normally allocate more spots. Why? The reason is
that the hashed values need not be unique. It is entirely possible that the hash values of two
different product codes could be the same. This occurs when the remainders are equal. This
creates a clash or collision of hash keys because we cannot store two values in one index location
in the array. As an aside, you can store two numbers in the one location. For example, assume that
values from 0 to 99 need to be stored. They could be stored as 99 99 i.e. 9,999. The first number
would occupy the first two digits and the second the last two!

In the above example the product codes 'rty' and 'yui' have the same hash keys.

There are three ways to handle such clashes or collisions.

1. Overflow area: we divide the table up into two sections. The first or main section holds
the data items as normal. The second section is called the 'overflow area' and data values
that result in clashes are stored here in serial order. When a data value is required and a
clash occurs, the overflow area is searched sequentially until the desired data value is
found.

2. Chaining: here the array values point to a possible chain of data values that all hash to the
same index. As a new data value is determined that clashes with an existing value, it is
chained on the end of the list pointed to by the index. This is a dynamic data structure
which is dealt with later in this chapter. A two dimensional array could also be used to
hold the possible codes that hash to the same row number, but would waste a considerable
amount of space.

3. Probing: as the array contains more spots than is required there will be free spots in

268

Computer Science

amongst the used sections. When a clash occurs we simply look through the array until we
find a free spot and insert the data item there. In future, when a clash occurs, we start a
sequential search from the index where the clash occurred until we locate the required data
item. We could also, by default, start at the top of the list.

A comment about performance - hash tables require more memory allocated to them than there
are data values to fill them. Thus more memory is required than a sequentially searched array.
Well hashed tables evenly allocate the data values over the remainder space. It has been found
that prime divisors do this best. A well hashed table should have a minimum number of data
values that clash. If a hash table has a number of clashes it needs to be re-hashed using a different
hashing algorithm or larger divisor. Often it is necessary to simulate the requirements before a
hashing method is decided upon.

In the above example if we chose to divide by 51 we would avoid clashes and generate these hash
key values: 6,28,25,45,48,11,7,37. Thus, to avoid clashes, we would need to allocate an array
of dimension 51.

The algorithm below shows how the hash table could be constructed. A use of the hashed table of
product codes is to allow validation of an input code by looking in the hashed array to check that
it matches a valid code.

A sample algorithm to demonstrate some of these points is shown below.

import java.io.*;
public class hashIT{
public static void main (String args[])
{

String [] c = {"asd","wer","ert","rty","tyu","erf","ghj","yui"}

new hashit(c);
}

hashIT(String codes[]
{

String hash [] = new String[51] ;
int ht=O;
for (int i=O; i< hash. length ; i++)

hash[i] ="";
}

for (int i=O;i<codes.length;i++)

for (int j=O;j<codes[i] .length();j++)
{

ht=ht+codes[i] . charAt (j) ;
hash[ht%51] =codes[i] ;

}

output (codes[i] +" "+ht+" "+ht%51);
ht=O;

}

ht=O;
String pcode="asd";
for (int j=O;j<pcode.length();j++)

269

Advanced Data Structures and Algorithms

ht=ht+pcode.charAt(j);
}

output (ht%51+" "+hash[ht%51]) ;
.if (pcode==hash[ht%51]
{

output ("Valid Code");

else
{

output ("Invalid Code");
}

This algorithm produces the following output.

asd 312 6
wer 334 28
ert33125
rty 351 45
tyu 354 48
erf 317 11
ghj 313 7
yui34337
6 asd
Valid Code

The hashing process can be thought of as mapping the set of keys onto a set of hash keys or hash
space. The diagram below shows this concept using the above example. It shows the set of
product codes being mapped onto a hash key space where each product code maps to only one
hash key.

Figure: 5.2 - Hash Space

Hash
function

EXERCISE 5.6

1. You are required to store the surnames of the people in your class in an array. To enable an
efficient lookup of a persons surname to see if they are in your class you are required to
setup a hash table using the surnames (you might need to add initials).

270

Computer Science

Step I: Calculate the hashtotal for each person in your class.

Step 2: Experiment with different divisors to minimise the possibility of clashes.

Step 3: Write a program to store the names in a hashed array (you might find it easier to
read the names from a sequential file).

Step 4: Write a procedure or function which accepts a surname and then returns a
suitable value that can be used to decide if the person is in the class or not!...................

~6~2 5.2.4-5.2.5 STACKS
As mentioned above, stacks are 'Last In First Out' data structures that can easily be implemented
using a static one dimensional array.

The basic operations are PUSH(data item) onto the stack and POpedata item) a data item off the
stack. A stack pointer is used to point to the next available free space and has an initial value of o.

The stack has a maximum size set to the length of the array.

A stack can be in three states:

Empty. Thus we cannot POP and the stack pointer is at o.
Part full: can PUSH and POP
Full: Thus we cannot PUSH and the stack pointer is equal to its maximum value.

In the following functions the array is termed 'stack' and the stack pointer is 'sp'.

PUSH algorithm

This algorithm is reasonably straight-forward. As the stack pointer indicates the free spot, we add
the data item at that indexed position and then increment the stack pointer. Before we do the push,
we must check that the stack is not full i.e. check to see if the stack pointer is equal to the
maximum length of the stack.

void push(int data)
{

stack[sp++] =data;

NOTE: Most languages support the unary operator ++ and this can be used to simplify the code
for the push to simply stack[sp++]. Used in this way the current value of sp is used and then it is
incremented. ++sp works the other way, i.e. sp is incremented and then used, which would not be
useful here.

POP algorithm

The key idea is that the stack pointer points to the next available free spot. If it is 0, the stack is
empty. If it is equal to the Maximum, the stack is full and we can pop, but before we pop we
decrement the stack pointer. This allows access to the item to be returned and we can then set the
item to the null value (e.g. 0) to indicate 'not a valid stack item'.

The basic pop algorithm is shown below. It returns the value of the location.

int pop ()

271

Advanced Data Structures and Algorithms

return stack[--sp]

The pop operation could be achieved by using a unary operator - to simplify the code,
i.e. returnValue =stack[--sp]. This decrements the sp first and then is used as the index into the
array.

A trace of this algorithm using a stack of 3 available spaces (i.e an array with 4 spots), is shown in
diagram 5.4.

Note: In most languages such as C, C++ and Java the array index values begin at O. Thus the
length of the array in physical terms is always one more than the maximum allowable index
value. When the last item was placed on the stack, the stack point (sp) was still incremented i.e. it
is now equal to the length of the array. We can use this fact to pick up if the stack pointer points
past the end of the stack, causing an overflow error. This is done by asking if the stack pointer is
equal to the maximum length of the array i.e. one more than the actual number of index values. If
it is, we generate an error and do nothing. The stack pointer only gets to be equal to the array
length when the stack becomes full. As we trap this value before push, our implementation works
to prevent overflow.

In most implementations, functions are included which can be used to return the empty or full
state of the stack. Such functions are declared to be boolean and thus return true or false states of
the stack related to whether the stack is full or empty.

Lastly, let us discuss the initial state of the stack. The stack array should be initialised to a set
value, though this is not absolutely necessary. The important initialisation is to set the stack
pointer to O.

An algorithmic implementation of a standard stack is shown below. It uses the notion of two
boolean functions to return the full or empty status of the stack. These are tested prior to
attempting either a pop or push operation. The implementation uses imperative or standard
programming structures and the stack point (sp) and the array stack[] can be thought of as being
declared as global variables.

public class Stack
{

int [] stack;
int max;
int sp;
public static void main (String args[])
{

new Stack(3);
}

public Stack(int size)
{

init(size);
int data = 0;
push(lO); push(5); push(3); //stack is full!
if (stackFull ())

System.out.println("Stack Full");
showStack();
if (!stackFull())

computer :SCIence

push(21); //try to add to full stack
else

System.out.println("Can't PUSH StackFull");
data = pop(); data = pop(); data = pop(); //stack is empty
if (stackEmpty())

System.out.println("Stack is empty");
showStack();

}

void showStack()
{

for (int i=O; i<sp; i++)
System.out.print(stac~D +" .. ");

System.out.println("") ;
}

void init(int size)
{

max = size;
stack = new int[size] ;
for (int i=O; i<size; i++)

s tack[i] =0;
}

sp = 0;
}

void push(int data)
{

stack[sp++] =data;
}

int pop ()
{

return stack[--sp]
}

boolean stackFull()
{

if (sp==max)
return true;

else
return false;

}

boolean stackEmpty()
{

if (sp==O)
return true;

else
return false;

}

The output of this algorithm is as shown below.
Stack Full
10 .. 5 .. 3 ..
Can't PUSH Stack Full
Stack is empty

273

Advanced Data Structures and Algorithms

The program uses two methods to check the status of the stack: stackFull and stackEmpty. The
stack pointer is set to point to the first element in the array i.e. sp =O. If on a POP operation
sp =0, we can conclude the stack is empty. This is because on a PUSH operation the element to
be added to the stack is inserted at the position pointed to by the stack pointer i.e. in the first case
the element is inserted into the first position. The stack pointer is then incremented to point to the
next free spot i.e. sp <- sp+ 1 and stack[sp] <- x.

The pop operation uses the reverse of this idea. When an element is removed from the stack the
stack pointer is decremented and then used as the array index i.e. stval =stack[sp] and then we
decrement the stack pointer i.e. sp <- sp - 1.

In this way the stack pointer is always pointing to the next free spot. Thus if it equals one more
than the maximum length of the stack, the stack must be full. In this case we can POP but we
cannot PUSH. If we POP the stack pointer is decremented first and points to the last element in
the stack. We can now PUSH because we use the current position to insert and then we add one to
the stack pointer. If we test at this stage, the pointer value indicates the stack is full.

A trace of the algorithm is shown in figure 5.3. It shows the initial state of the stack and then
proceeds to show the state of the stack as the values 10,5 and 3 are PUSHED onto the stack to
make it full. Three successive POP operations are then performed resulting in the stack being
empty.

Figure: 5.3 - Trace using a 3 item stack

Initial condition!I MAX I
Stack is empty

POPO - error

...-- sp

3 53
PUSH(IO) stack[sp] =10

2 sp =sp + 1 i.e. new sp
I ...-- sp
0 10

3

~
PUSH(5)

2 ...-- sp
1
0 10

3

I Mr I

...-- sp PUSH(3) as sp =MAX, stack is full

2
1
0 10

3

jMf I

POP, POP, POP
2 ...-- sp I

I
I

1 ...--sp
0 ...-- sp ...-- stack now empty

274

Computer Science

Stacks are commonly used to implement reverse polish calculations. The following example is
taken from the IB support material and shows how a stack can be used to implement a reverse
polish calculator.

SOLUTION
If 1 4 + =was entered the output would be 5. Both I and 4 are placed onto the stack and the +
calls PUSH(popO + pop()). The effect of this call is to assume that two numbers are on the stack
and the first is removed and the second removed and added. The result is then PUSHed back onto
the stack.

The =operator causes the error flag to be set to 0 and the value of answer to be set to the value on
the top of the stack i.e. answer = pope stack).

The algorithm implementation is shown below.

import java.io.*;
class Rpn

int sp=O;
int error = -1;
public static void main (String args [])
{

new Rpn () ;
}

public Rpn ()
{

double stack [] = new double [10]
char term='.';
double answer=O, number=O;
String messages [] = new String [4]
messages[1] "Division by zero";
messages[2] "Stack underflow";
messages[3] "Memory overflow";
String inLine;
while (error<O)
{

inLine = input("Enter expression");
term = inLine.charAt(O);
if (term == '=')

error = 0;
answer = pop(stack);

else if(term

else if(term
else if(term
else if(term

'+')push(stack, pop(stack)+pop(stack»;

'-')push(stack,-l*pop(stack)+pop(stack);
'* ') push(stack, pop(stack)*pop(stack»;
'/')

275

Advanced Data Structures and Algorithms

number = pop(stack);
if (number==O)

error = 1;
else

push(stack, pop(stack)/number);

else push(stack, Double.valueOf(inLine) .doubleValue());
for (int i=O;i<stack.length;i++)

output (stack[i]);
}

if (error ==0)
output("The answer = "+answer);

else
output ("Error: "+messages[error]) ;

void push (double stac~], double value)

if (sp==stack.length-l)
error = 3;

else
stack[sp++] =value;

}

double pop(double stack[]
{

double n=O;
if (sp==O)

error = 2;
else

n=stack[--sp]
return n;

EXERCISE 5.7

1. Define the term 'stack' and the operations POP and PUSH.

2. What errors can occur when using a stack?

3. What is the purpose of the stack pointer?

4. Draw a sequence of diagrams to show the contents of a stack array called PILE [] if the
following operations are performed. The maximum size of PILE is 3. Show the stack
pointer and assume that errors are detected for appropriate conditions. Use this sequence
of operations:

PUSH 10, PUSH 23, POP, PUSH 34, PUSH 21, POP, POP

5. Implement the simple stack program to manipulate characters. Write out a suitable set of
test data with expected results and then test your program. One such program might
reverse a string. For example, input APPLE and display it as ELPPA.

276

Computer Science

6. Re-write the reverse polish calculator to use a class for the stack and another for the
calculator. Test that this works. What advantage does this method bring?

•••••• ·•• <.....•....< .. 1[.·.

~l~2 5.2.6-5.2.7 QUEUES
Queues are First In First Out data structures that can be implemented using a one dimensional
array.

Data items are removed from the beginning of the queue. Thus if we used a simple array we
would remove the item the first time from the first position. It would then make sense to move the
other items up one spot. By doing this we would simplify things as all we would need to do is to
keep track of the tail of the queue. BUT, imagine the extra processing that is required in
constantly moving the data items. We therefore do not use this method and usually represent a
queue as a circular data structure with a separate index pointer for the head and tail of the queue.

We also use two boolean flags, 'qfull' and 'qempty', to keep track of the state of the queue. As
with stacks, an underflow errors occurs if you try to remove an item from an empty queue, and, an
overflow error occurs if you try to add data past the maximum size of the queue.

The example below shows a queue with four spots. It is shown as a circular representation of the
array. Note that the initial state of the queue is to have:

•
•

•

qfull set to false

qempty set to true

head set to 0

tail set to 0

This prevents the algorithm from trying to remove from the queue when it is empty. If we add to
the queue we increment the tail pointer by one. As we add to the queue the tail pointer can
become equal to the maximum size of the queue. If so, the tail is set back to 0 and a test is made
to see if it has now become equal to the head. If it is, the tail value remains the same but the queue
full flag is set to true i.e. qfull =true.

As we remove items from the queue the head of the queue is incremented. As we increment we
check that the value has not gone past the maximum. If it has, we set it to O. Irrespective we must
check to see if the new head value is equal to the tail value. If it is we have just made the queue
empty and must set the qempty flag to true i.e. qempty =true.

An example and diagram will help explain how this operates. Assume the queue has three spots
and to add an item to the queue we use ADD(item) and to remove an item we use REMOVE. In
the diagram the following operations are traced and the contents of the queue and the values of
head and tail are shown:

ADD(lO), ADD(21), ADD(42), ADD(23) note: error, REMOVE, REMOVE, REMOVE,
REMOVE note error.

277

Advanced Data Structures and Algorithms

Figure: 5.4 - State of Queue

Queue
Full

Queue
Empty

Queue - initial state

ADD 10)

Tail

ADD(23) - ERROR - queue full

REMOVE

Head

REMOVE REMOVE

REMOVE - ERROR - queue empty

As we add the values 10,21 and 42 to the queue we end up with the queue being full i.e. as we
add the third value the tail is equal to the head and this indicates that the queue is full. Thus when
we attempt to add 23 an error occurs.

As we then remove the top element from the list we get 10,21 and finally 42 removed and the
head is incremented each time. On the last occasion the head becomes equal to the tail and hence
the queue is now empty.

An algorithm for a circular implementation is shown below.

class Queues{

int data [] = new int [10]
int maxsize;
int head, tail;
boolean qfull, qempty;
int max;

static void main (String [] args)

new Queues();

public Queues()
{

initQueue();

278

Computer Science

int response, item, queueValue;
output("l: add 2: remove 3: print 4: quit If);

response = inputlnt("Enter Choice");
while (response !=4)

if (response == 1)

item = inputlnt("Input value to add onto queue ");
add(item);

}

if (response == 2)
{

queueValue=remove();
}

if (response == 3)
{

printQueue();
}

output("<l>: add <2>: remove <3>: print <4>: quit ");
response = inputlnt("Enter Choice");

void initQueue()

for (int i=O; i<data.length; i++)
{

data [i] 0;
}

maxsize=data.length;
head=O;
tail=O;
qfull=false;
qempty=true;

}

void printQueue()
{

if (! qempty)
{

for (int i=O; i<data.length; i++)
{

output (data[i]) ;

else

output ("Error: queue empty");

void add(int x)

if (qfull)

279

Advanced Data Structures and Algorithms

output ("Error: queue FULL");

else

datal tail] =x;
qempty=false;
if ((tail+l)==maxsize-l)
{

tail=O;
if (tail==head)
{

qfull=true;

else

tail=tail+l;
if (tail==head)
{

qfull=true;

int remove ()

int qval;
if (qempty)
{

output ("Error: queue empty");
qval=-l;

else

qval = datal head]
qfull=false;
datal head] =0;
if ((head+l)==maxsize)
{

head=O;
if (head==tail)
{

qempty=true;

}

else

head=head+l;
if (head==tail)

280

Computer Science

qempty=true;

return qval;

We can simplify these algorithms by a neat use of the modulo (integer remainder) function.

EXERCISE 5.8
1. Define the nature of a circular queue data structure.

2. What are the initial conditions of a queue?

3. What errors need to be detected when operating a queue?

4. What is the purpose of the head and tail variables?

5. Implement the simple queue program using a separate class for the queue. Develop a set of
test data and expected results and test your implementation.

6. A clerk is positioned at a service counter where customers queue to return faulty
purchases. As customers come into the complaints department they enter their surnames
on a computer terminal. You are required to write a program to store the names of the
people who queue at a service counter using a queue. The program should be able to
retrieve the top name from the queue and display this to the clerks so that they can address
the customers correctly and allow queuing customers to be added to the end of the queue.
It should also be possible to display the members in the queue and the length of the queue.

7. Use the internet or other source to look up the implementations that use the mod function
and implement the algorithm in full.

~6~~ 5.3 DYNAMIC DATA STRUCTURES
Arrays store data in a group of memory locations that cannot be extended once the program has
been compiled and executed. Hence arrays are referred to as static data structures. To overcome
the problem of needing to know in advance the likely maximum length of a list, we can use a
chaining mechanism by linking memory locations together to represent a list that is made up of
linked memory locations. Each memory location in the list points to the memory address of the
following member of the list. Thus the memory locations are said to be linked together. Such data
structures are referred to as 'linked lists' and as they are not bounded like arrays, they are said to
be 'dynamic data structures'.

~6~~ 5.3.1 DEFINITION OF AN OBJECT REFERENCE
In Java, links are implemented by using reference variables that contain the memory address of
the object being referenced. Thus a class can be defined that has a reference variable that can be
used to reference (point to) other objects of the same class type.

A class from which list objects can be created is shown below. Objects created from the class
have a data segment and a reference variable that allows other objects of the same type to be
referenced. The data segments can be a collection of variables of different, or the same, data type

281

Advanced Data Structures and Algorithms

i.e. to form a record. For example we could declare a class Node, which holds an integer age and
string name variables along with a reference variable called next that is itself of type class Node,
as shown below.

public class Node
{

int age;
String name;
Node next;

Note: this a very simple class definition. The variables are directly accessible using standard
objectName.variable dot notation; no accessor methods or edit methods are required to access the
data. The data parts are public and not private to the class. This all simplifies implementation and
aids understanding of the fundamentals of the process.

Java allows reference variables to be created to 'point' to existing objects.

Using the above Node class we can create a head and tail reference.

Node head
Node tail

null;
null;

Currently both head and tail do not reference any object, they are set to null.

If we now create an object of type Node called x and assign some data to age and name we can
now assign head and tail to reference the new object x.

Node x
x. age
x.name
next
head
tail

new Node ();//create and instance of the object
21;
"Fred";

null;
x; //head references the object x
x //tail references the object x

Diagrammatically the situation is as follows:

x

head tail

age =21
name = "Fred"
next = null

An object reference variable holds the memory address of another object, which can be of the
same class.

Using the Node class above we could have a list of nodes linked together to represent a set of
peoples' names and ages.

282

Computer Science

Each node in the list is comprised of a name and age as the data part and a pointer to the next
element in the list. This list is a simple example of a linked list. Let us assume that we have five
people and the data is represented as a list as shown below.

[(Fred,2l, 345), (James, 23,400), (Smith, 12,23), (Brown, 34, 200), (Ng, 23, null)].

The first element of each record is the name, the second the age and the third the physical
memory address. Assume that Fred occupies location 100. Head points to this value.

We can draw this set of nodes as a linked list as shown below. The first node has the name Fred
and its next pointer has the value 345 to indicate that the next element in the linked list is James.

Figure: 5.5 - Linked List

Separate Head and Tail pointers
allow the list to operate as a stack
or a queue.

Memory locations~345 400

Showing the memory location
Notes: allows the pointer to indicate the

address.

23 200

ALGORITHMS THAT USE REFERENCE MECHANISMS

References allow lists of data to be structured in various ways. An example of a simple linked list
was shown above. The advantage is that the length of the list need not be known and hence the
data structures constructed using points are known as 'dynamic data structures'. We will also see
in the next section that there are several other advantages. Data can easily be inserted without the
need to constantly move data items around in the list. Data can also be kept in sorted order by
inserting the data into the list at the appropriate point. The overhead is that the list needs to be
searched each time to locate the desired insertion point. Elements in a dynamic list cannot be
accessed directly via an index as they can in an array.

©IBO 5 3 :z
2004 ••

Java provides a very convenient referencing mechanism and you have been using it whenever you
pass objects to a class or method or return an object from a class or a method.

References in Java are passed to and returned from objects and methods in the normal way i.e. as
actual parameters and assigned to formal parameters. The mechanism is a pass-by-value one.
What is passed is the value of the memory address of the object.

A number of algorithms that use the reference mechanism are discussed in the following sections.

~6~'? 5.3.3-6 LINKED LISTS: SINGULAR, DOUBLE AND CIRCULAR
A linked list is a list of nodes. Each node must contain a reference variable to the next node in the
list and the last node in the list has its reference variable set to NULL to indicate the end of the
list. By default, a head reference also needs to be created to indicate the start of the list and,
optionally, a tail can be used to indicate the end if this is thought necessary.

Linked lists can be of three types. The following discussion relates to setting up a singly-linked
linked list. The other structures are briefly considered after this section.

Singularly linked lists are linked lists where each node has a reference to the next node. A
separate reference indicates the start of the list and the last node is set to NULL to indicate the
end of the list. The list can only be traversed in one direction from the beginning to the end. It is

283

Head

Advanced Data Structures and Algorithms

normal to use a head reference and to add items to the head of the list i.e. the list acts like a stack.
You could also allocate a tail pointer to allow items to be added at the tail. Otherwise the list
would have be searched to find the end of the list before a new node could be added to the list.

To create a linked list you need to follow these steps; the diagrams shows what is happening at
each stage. We will use the Node class as used above.

Create your Node class declaration i.e. what is to be contained in a Node object created from the
Node class.

public Node
{

int age;
String name;
Node next;

Create an instance of the class Node and call it head and set it to reference null.

Node head = null;

What we now have is an object called head of type Node that initialised to reference nothing i.e.
null. This starts this list. Head itself does not contain meaningful data.

Figure: 5.6 a

(2) --------+ null

Add an item to the list

Create another variable of type NODE, call this n and set head to point to n.

Now you can add data to NODE n i.e. n->age =23, n->name ="fred" and set n->NULL to
indicate the end of the list.

Node n = new Node();
n.age = 23;
n.name nfred";
n.next = null;

We need to set head to reference: n i.e. head =n;

At this point the list consists two objects referencing the object n as the head of the list i.e. the
objects n and head.

Figure: 5.6 b

-----I.~ c==B
To add another new item to the list follow these steps.

Create a new Node object called m.

284

Computer Science

Set head to point to m and m to point to n.

Assign data to m and set its next pointer to point to NULL.

Node m = new Node();
m.age = 34;
m.name = "Jane";
m.next = head;
head = m;

Notice the logical order of the last two statements. The new object is inserted at the front of the
list between the head and the object n that is referenced by head.next. To start the insertion
process m.next is set to what head is referencing i.e. head.next. Thus m now references n, but
head.next is still referencing n also. To complete the isertion we make head.next now reference
the new object m i.e. head.next =m.

The current state of the list is shown below. It now has two members of the list. The first has a
reference that is set to reference the second node. The head references the address of the first
node. In this case the new item is added at the front of the list

Figure: 5.6 c

mr?:\n
Head ---. ~)

Operations on Linked Lists

As with static lists we can perform a range of standard operations on a dynamic list structure.

Standard operations include the following:

Add an item to the list at the head or tail.

• Insert an item into the list at the nth location.

• Search the list to find occurrence of item x.

• Count the number of items in the list.

• Delete an item from the list.

• Output the contents of a list to the screen, printer or disk file.

Before looking at a specific program to manipulate linked lists it is appropriate to look at some of
the above operations in a less technical way.

Consider the operation of adding an item to the end of the list as shown above. We would need to
follow these basic steps.

Node x = new Node();
x.name = "Smith";
x.age = 12;
(Locate end of list, call it elist)
elist = x;
x.next = null;

285

Advanced Data Structures and Algorithms

The new list looks as shown below. We are assuming that a locate function exists and this gives us
the memory location of the last node as elist. Using this we can now set the last node to point to
the newly created node i.e. elist = x. Thus the new element is appended to the end of the list. All
that remains is to set the last node to point to null or x.next =null.

Figure: 5.6 d

Head --+ rnG) --+ nC0 --+ xornull

new node added
at the end

We now tum to looking at inserting a node into the middle of the list. Again, we assume that
there exists a function to locate the spot after which we wish to insert. This is called 'spot'! That
is, we are inserting the new node after the node spot. The diagram below shows the sequence of
events.

Head ---.CD--+I

The basic sequence is listed below

n

Figure: 5.6 e

Insertion point
spot

t
. - - - -. p --+CD---+null

spot.next = n.next
n.next =spot

• Make new node called n.

Locate insertion point called spot.

• Set n.next =spot.next.

• Set spot.next =n.

In other words, what we need do is change the current location to point to the new location, and
change the new location to point to what the current location pointed to!

Let us finally consider deletion of a node within the list. Let's assume the location to be deleted is
called 'deleteNode' and the previous node is called 'previousNode' i.e. previous Node.next
points to the node we wish to delete.

The basic sequence is shown in the following diagram. We need to make the previousNode point
to the node pointed to by the node to be deleted. This is accomplished by a single statement as
shown below in the diagram.

286

Head -.

p

Figure: 5.6 f

delete

~
-.Q)-.

d

p.next =d.next

q

Computer Science

previousNode.next =deleteNode.next

In the next section, algorithms for dynamic stacks and queues are presented. These show the basic
operations of a stack. The algorithms show how to add and delete at the head for the stack and at
the tail for the queue. For many students it may be appropriate to look at these algorithms before
proceeding with the algorithm described here.

EXAMPLE: OPERATIONS ON A LIST TO INSERT IN ORDER
An algorithm to demonstrate how to add, delete, search and output the contents of a list is shown
following. The node used is declared within the program and the variables can be accessed
directly as shown.

The key point of the algorithm is that the add operations is done to ensure the list remains in
numeric sorted order.

Some brief descriptions of the methods are now provided to help you understand the algorithm.

The add function (Java method) accepts the data item to be added as an integer and a newNode
created. The data is assigned. The data is then inserted into the list in numeric order. A check is
made to see if the list is currently empty. If it is, the data is added at the head and the tail set to
point to the head, otherwise the data is checked to see if it should be inserted before the current
head or if it comes after the current tail. Otherwise the insertion point is located within the list and
the data inserted at that point.

The delete function accepts the data item to be deleted. We assume that the items are unique i.e.
the data could be a unique index to a file. Note that you cannot delete from an empty list. Also, if
we are deleting the last item in the list we set both head and tail to null.

To indicate we found what we want, we use a boolean variable found, which is set to false to start
with. To store the previous node we use a variable tempNode. The variable currentNode is used to
start the search. To locate the node to be deleted we need to search through the list. Thus the
currentNode is set to point to the head.

To search the list we can use a while loop, as shown below. The while loop executes whilst we
have not found a match AND the next pointer is not equal to nulL The latter condition would
indicate that the end of the list has been found without finding a match.

while ((! found) && (currentNode.next) != null)
{

if (current.data == inData

output("found" + currentNode.data);
found = true;

287

Advanced Data Structures and Algorithms

else

tempNode = currentNode;
currentNode = currentNode.next;

}

}

In the above algorithm, if we find what we want, we set found to true and this causes the while
loop to fail. Otherwise we keep the location of the currentNode and store this in the variable
tempNode and we update currentNode to reference to what the present value of currentNode.next
points to. This allows the program to traverse the linked list until the value of currentNode.next is
null.

When the while loop is exited we need to determine what action to take. If we found what we
want and there is only one element in the list, we set both head and tail to null.

If we found what we want and it is at the end of the list, we set the tail to point to the previous
element in the list. This is stored as tempNode. We need to set tempNode.next to point to null.

If what we found is in the middle of the list, we make the previous element point to what the
element we are about to delete points to.

The interface is very simple and allows integer data input until -999 is entered as the sentinel
value. There is no data validation to check for duplicates.

The complete program is shown below.

class Node

int data;
Node next;

public class Llist
{

Node head
Node tail

null,;
null,;

public static void main(String args[])
{

new Llist();

Llist ()
{

int n;
head = null; tail=null;
n=inputlnt("input nil);
while (n! =-999)
{

add(n);
display();
n=inputlnt("Enter "I;

288

Computer Science

item = inputlnt("Input data to delete");
delete (item) ;
display();

}

void add (int d)
{

Node newNode = new Node();
Node current = new Node();
current = head;
if (head==null)
{

head=newNode;
tail=newNode;
newNode.data = d;
newNode.next=null;

else if (d < head. data)
{

newNode.data=d;
newNode.next=head;
head=newNode;

}

else if (d > tail.data)
{

newNode.data=d;
newNode.next=null;
tail.next=newNode;
tail = newNode;

else
{

while (current!=tail)

if (d>current.data && d<current.next.data)

newNode.data d;
newNode.next current.next;
current.next newNode;
current = tail; //forces finishup

else current = current.next;

}

void delete (int d)

boolean found = false;
Node current = new Node();
Node tempNode = new Node (); tempNode=null;

289

Advanced Data Structures and Algorithms

current = head;

while (!found && current.next !=null)

if (current.data==d) found=true;
else

ternpNode=current;
current=current.next;

if (found &&head==tail)

head=null;
tail=null;

}

else
if (found && current==tail)

tail=ternpNode;
ternpNode.next=null;

else
if (found) ternpNode.next=current.next;

if (!found) utput("data in list");
}

void display ()
{

Node current = new Node();
current = head;
while (current != null)
{

output (current.data+" .. ");
current = current.next;

}

output ("End List\n");

EXERCISE 5.9

1. Alter this example to only add at the head of the list i.e. get rid of the tail pointer.

2. Change the program to pass the head pointer as an argument and not act as a global
variable.

3. Modify the program to add the new piece of data so that the list is sorted in numeric order.

4. Dossier preparation program. Random access files on a disk cannot be displayed in some
kind of sorted order because the order is random, unless of course the file has been written
in sorted order. Assume that a file has been created to store details of cars in a car pool.
The actual structure of the files record is not relevant except that it must store the

290

OTHER STYLES OF LINKED LISTS

Computer Science

registration number of the car, car type, date purchased and cost of purchase. For the
purposes of this exercise we will not actually access the file. We will revisit this problem
in chapter 8.

Assume that an index file needs to be used to allow access to the data records using the
registration number. The index file therefore needs to store a pair of values i.e. the
registration number and the physical record number e.g. 123ERT, 34 indicates that the
required record is stored in record position 34.

Write a program that accepts as input the registration number and an integer that
represents the record position, and adds this detail to a linked list in sorted order by the
registration number. The program should be able to locate and display the record position
of a particular registration number, allow a new pair to be added and to allow a registration
number to be removed from the list.

© IB0 5 3 62004 ••

There are two other styles of linked lists. Each is now briefly considered.

A double linked list is a linked list where each node has two pointers. One points forward and the
other backwards. The list can therefore be traversed in either a forward or backwards direction.

A suitable node description for a double linked list is shown below:

Class Node

int age;
String name;
Node forward;
Node backward;

To set the forward pointer you use the same method as shown above. To set the backward pointer,
you need to temporarily store the location of the preceding node and when you make the new
node, make its backward pointer point to the previous node.

The other linked list structure is the circular list. This is a linked list that has the last node point to
the first node. This list does not use a null pointer value for the last node to point, but points the
last node to point at the start of the list.

A diagram of each structure is shown below.

Figure: 5.7 - Linked Lists

Doubly linked list - allows movement backwards and forwards through the list

() () ~)
Circular List

()-{)-{)-{)
t. ..

291

Advanced Data Structures and Algorithms

EXERCISE 5.10

1. Implement a doubly linked list using the node definition as shown above. Include a way to
move back or forward through the list after locating an item and insert data items in sorted
order.

2. Construct a series of diagrams to show how the following data would look if it was stored
in a simple linked list, a doubly linked list and a circular linked list. Assume that the data is
to be stored in sorted order and that a head pointer is to be used. The data represents
animals' names and the numbers of the memory locations. Data set (zebra:123,
elephant:12, rabbit:345, horse:34:whale:23).

a a>JI a ill .>. <.<. ...a ••• •

~6~2 5.3.7-8 DYNAMIC STACK
The implementation of a dynamic stack is comparatively straightforward and easier to understand
than the more complicated program discussed in the previous section.

To operate a dynamic stack we use a similar algorithm to the static version. The stack pointer
would need to point to the last location added, in this case we will simply add the new data item
to the head of the list and remove from the head.

There would be no need to check on overflow errors as the list length is now unbounded.
However we should not try to pop past the end of the list.

An example of the operation of a dynamic stack is shown in the following algorithm.

The program defines the node structure to have two data parts i.e. datal and data2 and a link
reference called next. The head is declared as an object to reference the head of the stack. The
initial status of the stack is to set the head to null. This indicates that the stack is empty.

The main program calls a sequence of pushes and pops and displays the status of the stack.

class Node

int d;
Node next;
Node(int dIn, Node nl
{

d=dln;
next=n;

}

public class StackDyn
{

Node head = null;
public static void main (String args[] I
{

new StackDyn(l;

StackDyn (I
{

292

Computer Science

//add some values, insert is at head
add(21); add(2); add(l); add(121); add(21);
display(head);
int r = pop(head);
output ("POPed value "+r);
r = pop (head) ;
output ("POPed value "+r);
r=pop (head) ;
output ("POPed value "+r);
output("Current status of stack");
display();

}

void add(int x)
{

Node n = new Node (x, null); //make the node object
n.next = head;//make new object poin~ to what head did
head = n;

int pop ()

if (head == null)
return -1;

else

int c = head.d;
head = head. next;
return c;

void display ()

Node c = head;
while (c!=null)
{

output(c.d+" . . ");
c = c.next;

EXERCISE 5.11

1. Design some test data that will be entered into the program and determine a set of
expected results.

2. Using the test data, perform a desk check (trace) on the program to check that the expected
results actually occur.

3. Convert the previous reverse polish calculator to use the above dynamic stack data
structures.

aaalla ..

293

Advanced Data Structures and Algorithms

© IBO 5.3.9-10 DYNAMIC QUEUE
2004

A dynamic queue operates in the same way as a static version except that we do not need to worry
about the queue becoming full in terms of the physical limitations of an array structure. If we
wish to bound the queue, then we need to keep count of the number of active nodes.

We maintain a head to reference the first node in the queue. Items are removed from the front and
added on using the end of the list. Items are added by searching for the end of the list, a tail
pointer could also be maintained to facilitate this operations.

A major advantage offered by a dynamic queue is that the head node can be easily removed by
moving the start or head pointer to point to the next node.

An example of a dynamic queue is shown below.

The front of the queue is referellced by the head and items are removed from the front of the
queue i.e. like the popO operation for a stack. However, items are added to the tail of the queue.

In this program a tail reference is not implemented, rather the end of Queue is searched for each
time and the new node added at the end of the list i.e. the tail.

class Node

int d;
Node next;

Node(int dIn, Node n)
{

d=dIn;
next=n;

public class QueueDyn
{

Node head;
Node tail;
public static void main (String args[])
{

new QueueDyn () ;:

QueueDyn ()
{

//add some values, insert is at head
add(21); add(2); add(l); add(121); add(221);
display();
int r = remove();
output ("\nvalue removed from Queue "+r);
r = remove(); r=remove();
output("Current status of Queue");
display();

294

Computer Science

int remove ()

Node n = head;
head = n .next;
return n.d;

void add(int x)

Node n = new Node (x, null);
if (head==null)
{

head n;
tail n;

}

else

tail.next n;
tail = n;

}

void display ()

Node c = head;
c = c.next;
while (c!=null)
{

output(c.d+" .. ");
C = c.next;

EXERCISE 5.12
1. Design some test data, and create some expected results which can be used to check the

above program to see if the program outputs what is expected.

2. Use a dynamic structure to write a program to solve the customer complaints department
queuing problem from the earlier section .

.... II

5.3.11-14 BINARY TREES
A linked list allows the list to grow dynamically, but unlike a static list, it cannot be searched
efficiently using a binary search. The only way to search a linked list is to use a linear search. We
can, however, use a special list structure called a binary tree to enable data in a list to be searched
using the concept of the static array binary search technique.

General tree data structures are common in computer science. A good example is the structure of
the folders or directories stored on a computer disk. The top level is commonly referred to as the
root level and from this, many sub folders can be created. Each of these sub-folders can also point

295

Advanced Data Structures and Algorithms

to many lower level sub-folders. Within each folder a number of files can be stored.

Binary trees are a special tree structure. A diagram of a binary tree is shown below. The tree is
made up of a series of nodes in which data is stored and left and right pointers are used. Each
node can have at most two sub-nodes coming from it, referred to as the 'right child' and the left
child' . These are pointed to by left (less than) and right (greater than) pointers. The top node is
referred to as the 'root node' , hence the term 'root node of the tree' . The lines linking one node to
another node are called 'branches'. The links to nodes that have no further nodes are referred to as
'leaves' of the tree. The logical structure resembles a tree, whereas the physical structure is a
sequence of memory locations with pointers.

Figure: 5.8

root node

. leaf- - - - - - - - - - - -.
v~.,,~"",- - __ sub t-ree- - _

parent

child

The general node structure is as shown below:

class NodeName

int dataPart;
NodeName leftPointer;
NodeName rightPointer;

Binary trees are very useful for storing dynamic lists of data which can be accessed in sorted
order. They can be searched efficiently using a binary search technique. Trees structured in this
way are known as 'binary search trees' and have the property that the left node is less than the
parent node and the right node is greater than the parent node. Data items that are equal can go on
either side provided, the algorithm used does this in a consistent manner.

SOLUTION
The general node structure would be as shown below and this can be shown diagrammatically.

Class NameTree

String name;
NameTree left;
NameTree right;

296

Computer Science

The placing of these names into a binary tree is shown in the diagram below. The diagram shows
the stages of the tree as each node is added.

Mary is placed into the root node. The next name is placed on the right and Andrew to the left.
John is placed to the left ofAndrew and Ng to the right of Zork. Claire is placed to the left of John
and Jane is placed to the right of Claire but on the left of John. Finally, Brian is placed to the right
of Claire.

In each case we have placed the data item to the left or right of the above node value depending
on the alphabetic order. Note that the tree needed no re-ordering or sorting as would be the case
with a static array.

Figure: 5.9Figure 5.10

Stage 1

Stage 2

Stage 3

~
~~

Stage 4

Stage 5

)--=---

297

Advanced Data Structures and Algorithms

Stage 6

C]laire

Stage 7

~lrew

~lire

Stage 8

S§lire

~

To search the tree we use the logic of deciding which branch to follow by asking the question 'is
the data item alphabetically equal or to the left or right'. If it is equal the match has been found. If
it is to the left and the left pointer is not null, move to the node pointed to and repeat the
questions, otherwise move to the right node and repeat etc. To search a tree we use a recursive
approach. This technique is discussed in more detail later. However, in simple terms, it allows a
function to call itself and the full problem is solved by solving smaller ones.

EXERCISE 5.13

1. Draw a diagram to place the following numeric data into a binary tree. The numbers could
represent a record number of data in a random access file.

45,26,11,40,56,30,44,34,112.

298

Computer Science

2. In general terms, describe what needs to be done to insert a new piece of data. i.e. search
for the spot and insert the data into that spot.

3. What advantage docs this structure have over a simple linear list? Can you quantify this
advantage?

............... II ••

An algorithm to show both creating and searching the above numeric example is shown below.

The node created has the following structure

class Bnode

int data;
Bnode left;
Bnode right;

The program operates by using a very simple interface to allow integer data to be input and
inserted into the tree. A sentinel value of -999 is used to terminate input. The program then
prompts the user to search for a data value.

class Bnode{
int data;
Bnode left;
Bnode right;

} ;

public class btree{

Bnode root= new Bnode();
public static void main (Strinq args[])
{

new btree () ;

public btree ()
{

int temp;
root = null;
temp = inputInt("Input data ");
while (temp != -999)
{

Bnode newNode = new Bnode();
newNode.data = temp;
insert (root, newNode);
display(root) ;
temp = inputInt("Input data ");

find = inputInt ("Input data value to find");
int found = sTree(find);
if (found == find) Output("found");

299

Advanced Data Structures and Algorithms

else Output ("not found");

boolean isEmpty()

if (root == null)
return true;

else
return false;

int sTree(int d)

int returnFalse = -1;
Bnode current = root;
while (current!=null)

if (current.data==d)
return d;

else if (current.data<d)
current current.right;

else
current current. left;

return returnFalse;

void display(Bnode current)

if (current !=null)
{

display(current.left);
output(current.data);
display(current.right);

void insert (Bnode current, Bnode newNode)

if (root == null)
root = newNocle;

else

if (newNode.data<current.data)

if (current.left==null)
current.left=newNode;

else

current=current.left;
insert (current, newNocle);

300

Computer Science

)

else

if (current.right==null)
current.right=newNode;

else

current=current.right;
insert (current, newNode);

Before we look at how the insert, print and search modules work it should be possible to work out
what the tree will look like and, in general terms, how these operations work.

EXERCISE 5.14

1. Follow the logic of the algorithm and draw a diagram of the tree produced by the program.
You should be able to do this even without knowing how insert and print and search
actually work.

2. Perform the search operation i.e. sTree(23, root) and explain how you would do locate 23.

3. Assume the input from the above example is placed into a tree and we are going to use the
output functions from the algorithm. Trace through how one of the output functions
operates. One of them will return the list in sorted order.

••••• aaaaaaJlaa
'tRAVERSING A TREE
To insert or search or print out the contents of a tree we need to look through the tree. This
process is called 'traversing' the tree. When you look at the tree you can locate what you want,
but the computer program needs to follow an algorithm. We always start the traversal of a tree at
the root node.

Consider the searching operation as shown by the function below. Note there are no duplicates
allowed.

int sTree (int d){
int returnFalse = -1;
Bnode current = root;
while (current!=null){

if (current.data==d) return d;
else if (current.data<d) current

else current = current. left;

return returnFalse;

301

current.right;

Advanced Data Structures and Algorithms

The value of the root is passed to the start and these are both of type tnode i.e. a tree node. The
value being looked for is passed to the variable d.

If the tree is empty we abort the search and return -1 to indicate nothing is found. This is done by
using a while loop with the condition if start not equal to null to continue to loop.

Inside the loop ifd is equal to the node data item we stop and return I. This means that control is
returned to the calling program. Otherwise we need to ask "do we look down the left or right
branch from the current node" and set start to either the current start->Ieft or start->right value.

If the data value d is greater that the current value we reset start to be the value of the right branch
pointer. Otherwise we set it to the value of the left branch pointer.

Now, the important bit. If we get to a position where either start->Ieft or start->right are null this
means that what we are looking for logically cannot be in the list because we have got to that part
of the list by asking is what we want greater or less than the desired amount. If there is no further
part of the tree to search, what we want must not be in the list and importantly, it obviously
cannot be in any other part of the list either.

Let us now consider the insert operation.

The function to insert is shown below. The node d is the element to be inserted and the node t is
the root of the tree.

The function uses recursion. In this case we can think of this process as saying "check the root
first". Now look down the left or right branches. If the element has to be inserted into the left
branch we check to see if there is anything down the left branch. If not we just make the left
branch point to the desired node and return. Otherwise we want to call the insert function again
and change the root to the next left branch node and repeat asking the question. We keep doing
this until we insert the node.

The insert algorithm is not a general insert i.e. it does not cope with adding in the first element to
the ROOT position because the algorithm does this explicitly. A general insert algorithm is shown
below:

void insert (Bnode current, Bnode newNode){

if (root == null) root = newNode;
else

if (newNode.data<current.data)
{if (current.left==null) current.left=newNode;

else
(current=current.left; insert (current, newNode);}

}

else
{if (current.right==null) current.right=newNode;

else
(current=current.right; insert (current, newNode);}

This algorithm operates in the same way but will insert the new node into the root if the current

302

Computer Science

root is null, thus it is a more general algorithm.

Let us now consider the print or display or complete tree traversal operation. This operation is not
the same as the search operation because in this case we want to visit every node in the tree. In the
exercise above you were asked to trace the workings of the output functions. One of these output
the list in sorted order. The method display(Bnode current) performs this.

void display(Bnode current){

if (current !=null)
{display(current.left) ;

output(current.data);
display(current.right);

}

If you did this successfully you needed to look down the left branch repeatedly until you reached
the last left node that had no child. This must have the numerically smallest value i.e. 11. The next
value is the node immediately above i.e. the root ofthe sub-tree, 23. We then needed to look down
the right branch and repeated the previous sequence looking for the smallest element in the right
sub-tree which is 40.

This traversal is known as the 'inorder traversal' and in this case will give the data back in sorted
order -11 ,23,40, 45,56,112.

An inorder traversal follows the sequence 'look down the left branch, then the root, then look
down the right branch' .

There are two other traversals that we meet in the next section. They are 'preorder' where we visit
the root and then the left and the right sub-trees of each sub-tree and the 'postorder' where we
visit the left and right sub trees and then the root of each sub-tree.

EXERCISE 5.15

1. Create a binary tree program to store the surnames of the people in your class and allow
the user to ask if a name is in the list. You can add a menu to allow the operations to be
requested. What will you do if there are two people with the same name?

2. Add a function to allow the names to be displayed in sorted order.

3. Higher level dossier problem. Consider the previous file index problem i.e. the car
registration file index. It was not possible to search the linked list efficiently other than by
use of a linear search. The search function in the above example effectively implements a
binary search, and wc know that this is much more efficient.

Again the node is the same except that it now has to have a left and right node pointer.
Hence out node would be:

class IndexPointer

String rego;
int recordAddress;
IndexPointer left;
IndexPointer right;

303

Advanced Data Structures and Algorithms

Assume that you will enter the index item values from the keyboard.

Your program needs to be able to accept a registration number and then search the binary
tree and display the recordAddress to the screen.

:a:all:a.aaaaaaaaa
Using trees to evaluate arithmetic expressions

Another common use of a tree is to evaluate arithmetic expressions.

We have already seen that reverse polish notation can be evaluated using a stack.

For example, the expression (A-t-B)*(C-D) can be written using post-order or reverse polish
notation as AB+CD-*. As shown in a previous example, a stack can be used by popping two data
values and then applying the operator that is popped next and repeating this until the list is
finished.

A tree can be also used for this calculation.

To store the expression (A+B)*(C-D) we would place the * in the root position. To the left would
go the + and then to right and left of the + would go A and B respectively. The - would be placed
to the right of the root node and then C and D would be placed to the left and right of the minus
(-) node. A diagram of the resulting tree is shown below.

Figure: 5.10

B

To traverse (read through) the entire tree in a particular order we can use the post-order traversal
to retrieve the expression in reverse polish notation or postfix notation.

Post-order traversal is accomplished by using the following algorithm strategy:

Visit the left sub-tree until a null pointer is reached and retrieve the data item.

Visit the right sub-tree until a null pointer is reached and retrieve the data item.

Visit the root of these left and right pointers and retrieve the data item.

By applying this strategy we would:

Look down the left sub-tree and retrieve A.

Look down the right sub-tree and retrieve B

Look at the root and retrieve the + sign.

Our list would be AB+.

We return to the root and look down the right sub-tree.

304

Computer Science

Look down the left and retrieve C.

Look down the right and retrieve D.

Look at the root and retrieve-.

Our list retrieved would now be AB+CD-.

Look at the root and retrieve *.

Our list retrieved would be AB+CD-*.

This list could be evaluated as we go or now treated as a stack.

There are two other ways to traverse a tree: pre-order and inorder.

Inorder allows the data to be retrieved to give infix notation i.e. (A+B)*(C-D). To do this we
visit the left sub-tree, then the root, then the right subtree.

Pre-order allows the data to be retrieved in prefix notation. i.e. *+AB-CD. To do this we visit the
root, then the left sub-tree, then the right-sub tree.

There is one operation that we have not covered. That is the DELETE node operation.

DELETE OPERATION
Consider the diagram shown below. To delete the node with the data value of 26 we could redraw
the tree as shown. In this case the node has two children i.e. a left and right. So, what do we do?
We look down the right branch for the child with the minimum value i.e. 30.

45

26/ ~6
11/ ~o ~112

3V ~4
~34

The node with 30 must have only a right branch because it is the minimum in that sub-tree. We
now set the node with 26 in it to have the data value of the minimum i.e. 30. But what do we do
with the right hand branch of the current node with 30 in it? We make the node that points to this,
point to the right and child of 30 as its left hand pointer. Now 40 points to 34 on the left and 44 on
the right! And, we can do this by calling the processes again to treat 30 as the new node to be
deleted in that part of the sub-tree i.e. treat 30 as the root.

305

Advanced Data Structures and Algorithms

We now have.

But how exactly do we do that? We use recursion, though this is a bit tricky! The functions are
shown below.

Bnode delNode(int d, Bnode current)
{

if (current==null) return current;
if (d<current.data)

current.left=delNode(d, current.left);
else if (d>current.data)

current.right=delNode(d, current.right);
else if (current.left !=null && current.right !=null)

{

current.data=locateMinValue(current.right) .data;
current.right=delNode(current.data, current.right);

}

else
if (current.left!=null) current=current.left;
else current=current.right;

return current;~

}

Bnode locateMinValue(Bnode current)
{

if (current==null) return null;
else if (current.right==null) return current;
return locateMinValue(current.left);

This works by finding the item and then looking down the right branch to find the minimum. The
data value of the minimum replaces the found item. We then need to delete the minimum and, if
there is a right branch, we then repeat the process until what we delete has no left or right child.

EXERCISE 5.16

1. Higher level dossier question. Modify the index binary tree example in the previous set of
exercises to include the ability to delete a node from the index tree.

2. Word lists often need to be stored in sorted order to allow efficient searching of the list to
check for matches e.g. a dictionary. Create a simple dictionary program that reads a set of
10 words from a sequential file and stores the words in a binary tree. Add the ability to
search the tree and report back if an input word is in the list.

3. An organisation operates a stock purchase service via the Internet. A user logs in by usc of
a username and password. The customer can then enter the stock code (e.g. IBM) of the

306

computer ;)ClenCe

company and the quantity of the shares they wish to sell. A sample entry would be 'IBM,
20' which indicates that the customer wishes to sell 20 IBM shares. Instead of executing
each share transaction as it is recorded, the program allows the customer user to enter a
number of share trades in anyone session. Thus, the customer can add and delete shares
traded from anyone session. A binary tree is to be used to store the share trades and the
program needs to be able to allow the addition and deletion of share trades. Write a
program to simulate the operation of this share trading software.

4. The local zoo needs to be able to search a list of the animals they have in the zoo to find
out the age of the animal to assist with feeding. Make up a list of 10 animal names
assuming that there is only one of each animal. The ages are stored in an array called
AGES. The age of each animal will be stored in the array location that corresponds to the
animal's name hashkey value. You will need to explore ways to set up the hashed array so
that no clashes occur. A second dynamic data structure, i.e. a binary tree structure, is going
to be used to search on the animal's name. The search will operate by the user entering the
animal's name and the program displaying the age of the animal. The binary tree will need
to be created by reading the array at the stmtup of the program. The tree can be searched
and, if a match is found, the hashtotal is calculated, and the array accessed to find the age.
To keep things simple,just hard code the animal's age at the appropriate place in the array.
Note: this last question introduces the idea of using an index. The array is simulating a
direct access file structure and the binary tree is providing a way to search the index using
the primary key to get the record position.

••••••••••••••

LOGICAL AND PHYSICAL REPRESENTATIONS OF DYNAMIC
DATA STRUCTURES
Dynamic data structures can be represented logically using diagrams as shown above. However,
in the computer, the physical structure is maintained using a sequence of pointers. In the
preceding examples of binary trees and linked lists, we saw that a logical diagram could be drawn
that showed the structure. In the case of the binary tree this structure was very different from the
physical representation, which is only a list of memory addresses. The programmer adds the
structure by the use of pointers.

Linked lists can also be represented using two sets of arrays. One array holds the data and the
other holds the pointer. The example shows a sequence of numbers in random order, but a linked
list is created using a link array of the data array addresses.

Figure: 5.11

[0] [1] [2] [3] [4]

I Mark Zork Andrew John [Ng

link[]

4 I -l(end) I 7 0 [1

head =2

[5]

Claire

6

[6]

Jane

3

[7]

Brian

5

The physical structure is simply a list of sequential array memory locations. The logical structure
is the linked list: Andrew->Brian->Claire->Jane->John->Mark->Ng->Zork.

307

FEATURES OF AN OBJECT

Advanced Data Structures and Algorithms

~6~~5.4 OBJECTS IN PROBLEM SOLUTIONS
© IB0 5412004 • •

In normal computer programs data is defined and stored separately from the functions that
process the data. Data types such as 'integer' or 'string' define how the data will be stored in
memory and allow reference to the data using a variable name. User defined data types such as
for a record structure or pointer structure allow related data of different data types to be collected
together. The data can be structured in a variety of ways such as arrays, linked list, files etc.

Functions or procedures can then be defined to operate on the data. Functions and procedures can
communicate with each other by passing data to and from each other or by returning a particular
value that is either output or assigned for further use. Functions are distinguished from
procedures by the fact that they return a value, whereas a procedure performs some processing
but does not return a value.

Libraries of functions are usually available to allow programmers to access standard processing
functions or procedures. The workings of the code in these library functions is hidden from the
program developer.

An object allows the programmer to develop or access computer code that combines both data
and operations into one unit. The object can be given data that acts as an initial input but, from
that point on, the operation of the object is hidden from the programmer. The theory is that, by
using objects, we should be able to increase reusability of code and reduce errors.

The data items of an object are referred to as 'data members'. Data can be completely hidden
from the programmer so that it is impossible to access the data values, to see them or change
them, without the use of an accessor method or edit/change method. Data provided to an object is
often treated this way and is assigned to data members within the method thus hiding the data, i.e.
made private to the object.

Functions defined within the object are referred to as 'member functions' or 'methods' . These can
call other objects and their operation is hidden from the programmer. Member functions can be
used to report data values from within the function or to provide internal processing.

Objects are described using algorithms or computer code that can be thought of as providing a
blue print for the operation of the object. In this section on OOP we will refer to the description of
the object as the CLASS description. The class is a bit like the plans of a building. But the object
can only come into use when the programmer asks for the object to be constructed using the class
definition. When the object has been constructed, memory is allocated and the programmer can
use the functionality of the object. Objects therefore need to contain a special member function
called a 'constructor'. The constructor executes to build the object and make available its
functionality. Whilst an object is in use it takes up memory and thus when it is no longer required
this memory needs to be reclaimed. A separate function called a 'destructor' needs to be called to
do this and usually operates hidden from the programmer.

Let us consider a general example of a data list of real numbers ('doubles' in Java) and the
standard operations you may wish to undertake on the list.

Design
Object Name RealList
Constructor:

RealList(data list, number of items in the list) accepts data

308

Computer Science

array and stores in local
array that is hidden.
class methods

print(): Print list
average(): Calculate and return average
max() or min(): Calculate maximum and minimum
sort ()
displaySort(): Display sorted order

We could, of course, define many more member functions or methods.

To use the object we would have to create a new version of the object by calling the constructor
and giving it the array of data. For example, we could say something like this in our program:
realList ages = new reaIList(data, n). This calls the constructor and passes the data list to the
object i.e. an instance of the object has been created and can now be used.

To access the methods, we would use the name of the object, which is 'ages', and call the
required member function (method) e.g. ages.printO would display the data or
output(ages.max()) would output the max value in the array.

A full discussion of the basis for using objects is beyond the scope of this book, however, there
are many excellent references and students are encouraged to explore these. The notion of
ABSTRACTION is important. The above object is an abstraction, or generalised view, of a list of
real numbers. It is not particular to a specific problem or list. The programmer is free to re-use the
abstract nature of the object in anyone of a number of particular ways.

Such an object could be used to process and type a list of real numbers. For example:
temperatures, distances, heat rates, stock fluctuations etc.

We use the process of abstraction all the time when we make databases in which we define the
generalised view of the entity (e.g. 'student' in a school's database). In this use of the term
'abstraction', we view the student in a general way, but only in a way useful to solve the database
problem. We are not interested in a number of 'things or characteristics' of the students other than
their personal details, subjects or marks.

Once the data had been supplied to the object it cannot be accessed directly if the data in the
object has been declared to be private. Information could be gained from the object by asking it
questions i.e. using the methods available in the object. The questions would take the form of
calling member functions that were available to the programmer. But, only the results of the
functions are available. The programmer cannot get at the code in any way.

~6~~ 5.4.2 ENCAPSULATION
The above object example shows the concept of encapsulation because both the data and the
member functions or methods are combined into a single unit referred to as 'ages'. The primary
purpose of encapsulation is that it hides data and information about how the object works. The
programmer simply needs to use the functionality provided and can concentrate on what has to
happen, not how it is to happen.

© IB0 5 4 32004 • • BASIC FEATURES AND ADVANTAGES OF
INFORMATION AND DATA HIDING

An object contains both data and the ways to manipulate this data. The user or client of the object
need only know what the object can do to be able to use it. In the example above the list object is
an abstraction of the basic features of all lists. The user of the object can therefore use the object

309

Advanced Data Structures and Algorithms

at a more abstract and less detailed level to solve their problem.

In OOPS terms, information hiding (as this encapsulation of code and data is known in computer
science) makes for highly portable, easily modifiable and safer software that is less prone to
errors. Large applications may be easily maintained since objects may be updated, recompiled,
tested and used as required.

~6~2 5.4.4 POLYMORPHISM
Polymorphism is a term used in a number of related ways. The use of the + operator for adding
real numbers and integers and concatenating strings employs the same syntax. This is an example
of polymorphism known as 'overloading' that is available in traditional imperative programming
languages.

The objects behave according to the data types presented, i.e. the pattern of the data types,
without the programmer needing to perform any extra steps.

Objects can have a number of different constructions that all have the same name, but which may
have different parameters. The generalised list example uses an array.

The array may be full, in which case we need not pass a value for n and create the object by the
call RealList ages = new ReaIList(ages) or we may have used 0 to n elements, in which case a call
could be RealList ages =new ReaIList(ages, n). Alternatively, we may wish to treat a sub-list, in
which case we have RealList ages =new ReaIList(ages, low, high).

~6~2 5.4.5 INHERITANCE
Inheritance in object-oriented programming is the ability to derive new classes from existing
definitions of classes. A derived class or subclass inherits the data and functions or methods of the
base class or superclass, and may add new variables and functions or methods. New methods or
functions that have the same name override those in the superclass.

The major advantage is that the programmer is able to extend the functionality of an object or
customise objects without needing to understand how the original class definition of the class was
structured.

The diagram below shows the basic concept of inheritance. The parent class defines two
variables, one private and one public. The child class inherits the characteristics of the parent and
hence can access the public data but not the private data. It can also access the method Y from the
parent. The methods X(int P) of the parent and X(real P) of the child can be selected depending
on the data type of the argument provided by use of the polymorphic overloading feature of
OOPs. The method A in the child over-rides the same method in the parent because the data types
of the arguments are the same.

Figure: 5.12

Child

in Its

Method A
Method X (real P)

310

T - private
Q - public
Method A - public
Method X(int P) - public

Computer Science

EXERCISE 5.17

1. Define the terms 'class' and 'object'.

2. Describe in general terms the process of creating an object from a class.

3. What is meant by the term encapsulation?

4. What is meant by the term polymorphism?

5. What is meant by the term inheritance?

6. Use the diagram of a child and parent class to answer the following:

a) What data is private to the parent?
b) What methods are available in the child?
c) Which method can be overloaded?
d) Which method can be overridden?

S.·.···S> ••SSS.i.l[.i.>··.i..i..
~6~.? 5.4.6 ALGORITHMS WITH OBJECTS

An example of how to define and use objects is now discussed.

Pay calculation

Assume that a normal employee has their gross pay calculated by multiplying the hours worked
by the hourly rate. An object for this could be described by the following class diagram design.
The diagram shows the data constructor i.e. EMPLOYEE and the range of accessor methods to
retrieve the data and a method to calculate the grof>S pay. Obviously the pay could be directly
calculated without the need of a method.

Figure: 5.13

namt:
data hours

rate

Employee
get name

~---- accessor methods get hours
get rate

constructor (n,h,r)

method gross pay

The class definition derived from this design is shown below. Note: imperative programmers
often feel that object definitions are long and complex because accessor and edit/change methods
have to be provided. That is, the traditional assignment statement is replaced in many cases by
calls to the object's methods if the data has to be accessed. This is a feature of OOP because
encapsulation is used to protect data from accidental change.

public class Employee
{

private String name;
private double hours;
private double rate;

311

Advanced Data Structures and Algorithms

public Employee (String nameln, double hours In, double rateIn)
{

this.name = nameIn;
this.hours = hoursIn;
this.rate = rateIn;

String getName()
{

return name;

double getHours()

return hours;

double getRate()

return rate;

double grossPay()
{

return hours * rate;

We could now use this object to calculate a person's pay. An algorithm to do this is shown below.

public class DoPay
{

public static void main (String args [])
{

Employee emp = new Empoyee("Fred", 34, 23.55);
output Double (emp.grossPay());

The line Employee emp =new Empoyee("Fred", 34, 23.55); creates a new instance of the class
Employee i.e. it creates or instantiates the object of type Employee by calling the constructor
Employee() and passing the data to the object. The data cannot be directly accessed other than by
use of the accessor methods because the instance data variables are declared to be private. The
grosspay() method can be called directly using the dot notation by specifying the object type i.e.
emp.grosspPayO.

What if we also had a casual category of employee who received a 10% loading on their hourly
rate?

We could write a separate program or we could extend the current class and derive a new class
called casual. A design for this class is shown below and the algorithm description follows. The
key feature is the addition of a new grosspay() method which will over ride the grosspay()
method in the Employee class.

312

Computer Science

Figure: 5.14

Employee)-----method grosspay

~C~llal~)-----method grosspay

The algorithm derived from this design is as follows. Note: Casual inherits the features of
Employee but we need a way of creating the object Employee and giving it the necessary data.
That is, the data name, rate and hours is held in Employee, not Casual. Java does this by the use of
the super(parameter list) command as shown below. The child class instantiates the parent class
and does this automatically. The super command ensures that the appropriate constructor is
called. Note, super() must be the first line in the constructor.

public class Casual extends Emp:_oyee
{

private double loading;

public Casual (String nameln,double rateln,double hoursln,double loadingln)

super (nameln, rateln, hoursln);
loading = loadingln;

public double grossPay()
{

return loading * getRate() * getHours();

To use this object we would employ an algorithm such as that shown below.

public class DoPay
{

public static void main (String args []
{

Casual emp = new Casual ("Fred", 34, 23.55, 1.10);
outputDouble (emp.grossPay());

The key here is that the grosspay() method is called from the Casual object not the Employee
object, however, the format for the call is exactly the same. This is an example of polymorphism
using overriding ofthe parent method by the method in the child.

313

Advanced Data Structures and Algorithms

EXERCISE 5.18

1. Implement the above set of algorithms.

2. A school has established a policy whereby every student from age 12 to 15 years is
expected to do one hour of homework per night. However, students older than 15 are
expected to do 3 hours homework per night. Write a program that enables a user to enter a
person's name and age and then to display how many hours of homework s/he should be
doing.

3. A car hire company operates three sorts of cars: 4 cylinder, 6 cylinder and 4WD. The daily
rates are $50, $80 and $150 respectively. The company records the name of the hirer, the
car and the number of days hired. Use OOP techniques to define a class for a standard car
and then use inheritance to define another set of child classes to enable the rental to be
calculated.

ADVANTAGES AND DISADVANTAGES OF OBJECTS
Advantages

• Faster development.

• Increased quality of software, more robust.

• Easier maintenance.

• Implementation details are hidden.

• Enhances reusability and modification.

Disadvantages

The fact that an object hides information about how it operates can cause problems for the
programmer. In teaching examples, the programmer often develops the object, but in real
situations, the programmer will probably be part of a team. An object may use a particular
method that is inefficient or worse and which operates incorrectly for some types of data or
ranges of data. Without access to the object code the programmer is unable to rectify these types
of problems.

Many computer languages do not support objects either directly or via some form of interface. To
move from a non-object orientated environment would be costly in both money and time.

Very simple programs can take longer to construct using objects.

There is still a lack of a standarised approach as to how to implement objects.

314

Computer Science

~6~2 5.5 RECURSION
We have already used recursion in the discussions about the use of the binary search, quick sort
and tree traversal.

~6~2 5.5.1 DEFINITION OF RECURSION
Recursion is the process of repeatedly calling a function from within the definition of the function
itself.

Recursive functions are derived from recursive relationships. For example, factorial n can be
defined in terms of the number n itself as factorial n! = n*(n-I)*(n-2) etc. This could be written
as n! = n*(n-I)!.

Recursive functions must have a condition defined that needs to be met to terminate the recursive
sequence of calls to the function. In the factorial example it is important to stop when n calls have
been made otherwise zero will be included in the multiplication or the process will not stop and
cause an error as available memory is exhausted.

When the recursive process is terminated, the computer evaluates each call in sequence until the
final calculation is performed. This process is best thought of as backing out of the nested set of
calls and evaluating as you go.

Let us use the example of calculating factorial n.

n! =n*(n-I)*(n-2)* I, which is n * (n-I)! etc.

The stopping condition is to stop when n is less than I i.e. O.

A mathematical (non-Java) recursive definition is described below:

factorial (n : integer)

if n <= 1 then factorial = 1
else factorial = n * factorial (n-1)

The recursive function has a name and its parameter is the value of n!. The 'if statement' checks
to see if the termination condition is true. If it is, then the value of the function is set to I and this
causes the recursive sequence to end and the backing out evaluation sequence to begin. Notice
that when factorial is set to I there is no recursive call made and the sequence ends.

If the termination condition is not met, another recursive call is made and the value of n is
decremented by I, but the value of n is included in the multiplication sequence.

Let us apply the algorithm to calculate factorial 4 i.e. 4!.

The calls would look like this:

factorial(4)
4 * factorial (3)
4 * (3 * factorial (2))
4* (3* (2* factorial (1)))
4* (3* (2* (1)))

315

Advanced Data Structures and Algorithms

The sequence of calls terminates and the calculations are now performed and the value 24 is
returned as the value of the function.

Two Java methods of implementing this recunive calling process are shown below. The first uses
iteration and the second uses recursion.

int factorial (int n)

int f = 1, i 1;
while (i <= n)

f = f * i;
i=i+1;

return f;

The function accepts the value n which is used to stop the loop. A second variable (i) is used to
multiply with and a third variable f, originally initialised to 1, is used to accumulate the value of
the factorial. The value of the factorial (j) is returned when the counter i exceeds the value of n.

A function that uses recursion in Java to compute factorial n is shown below.

public class Recursion
{

public static void main (String args[])
{

new Recursion();
}

public Recursion()
{

System.out.println("factorial 4
}

int factorial (int n)
{

if (n==l)
return n;

else
return n*factorial(n-l);

The terminating condition is to check when n is equal to 1.

"+factorial(4));

If this is the case the value of n is returned, otherwise the value of n is multiplied by what is
returned by the recursive call.

factorial(4) calls the function and passes 4.

4*factorial(3) is then called, which in turn calls

4*3*factorial(2), which then calls 4 * 3 * 2 * factorial(l). This terminates the calling

316

Computer Science

cycle and the computaiton 4 * 3 * 2 * 1 is evaluated to give 24.

The traversing of a binary tree is done using recursion (see previous example page 304). Also, to
look through a linked list, recursion can be used.

©lB05 5 22004 •• ADVANTAGES AND DISADVANTAGES OF
RECURSION

Why would you consider using recursion? Many problems have elegant solutions using
recursion. Recursive algorithms require less variables and often many fewer lines of code than
other methods. There is a class of problems which have no other way of being solved.

However, recursion can take longer than other methods. Each call has a time overhead and this
may lead to a recursive procedure actually being slower than its iterative equivalent.

Recursion can also be tricky to follow. This can cause problems for maintenance programmers.
Thus it is particularly important to clearly document how recursion is being used so that other
programmers can understand your code.

~6~2 5.5.3-5 USING RECURSION
At this point the reader is asked to go back and reVIew the use ofrecursion in the binary search,
quick sort and tree traversals as examples of recursion. Three examples are now worked through
to show how recursion can be used.

SOLUTION
A recursive algorithm for this relationship is defined below.

int fib(int n)
{

if (n<2)
return 1;

else
return fib(n-1) + fib(n-2);

317

Advanced Data Structures and Algorithms

SOLUTION
As a function, this would be represented as follows:

int ack(int m, int n)

if (m 2)

return 1;
if (n 0)

if (m 1)

return 2;
else

return m+2;
}

else
return ack(ack(m-1,n), n-1);

}

SOLUTION
An algorithm to achieve this is shown below.

int power (int x, int n)
{

if (n == 0) return 1
else return x * power(x, n-1)

SOLUTION
An algorithm to achieve this is shown below. The method is called by pass the head node object

318

Computer Science

as the argument i.e. count(head). Head is assignment to the object current in the method. If
current is null then the recursive process terminate~ by returning 0, otherwise the 1 +
count(current.next) is called. The reference to the next node in the list is passed back. This
process repeats until the null terminating reference is encountered. Each time a recursive call is
made 1 is added!

int count(Node current)
{

if (current = = null) return J;
else

return l+count(current.next);

EXERCISE 5.19

1. Define the term 'recursion'.

2. Discuss the advantages and disadvantages of recursion.

3. Implement each of the above examples of recursion.

4. Perform a trace on the raising to power recursive solution.

319

Advanced Data Structures and Algorithms

~6g,?5.6 ALGORITHM EVALUATION
5.6.1-2 EFFICIENCY OF ALGORITHMS
The time it takes a computer to execute a particular algorithm depends on the speed of the
processor and the way the algorithm operates.

Thus, it is difficult to give precise times, but we can generally use some form of approximation to
show the relative dimension of the time required, or RAM space needed, to execute an algorithm.
We are interested in obtaining measures for two aspects of an algorithm's efficiency: impact on
the time taken to process and the amount of RAM used by the algorithm.

For instance, if we consider the linear search, the time it takes to find something in the list is
dependent on, or proportional to, the length of the list. Thus any consideration about the speed
efficiency of a linear search needs to be judged in terms of the length of the list (n).

The speed (efficiency) of a linear search when applied to a list of size n has these possibilities:

•
•

•

Best case is 1 comparison.

Worst case is n comparisons.

A . n
verage IS :2 .

As n gets very big it does not matter whether we talk of n or ~ .And for this reason we say that

the time efficiency of a linear search is 'order /l'. This means that the upper bound or worst case
on the speed of processing is n.

Contrast this to the binary search. In a binary search the best case is I and the worst at maximum
case is logzn. We therefore say that the binary search has a time efficiency of 'order logzn'. For

very large lists this is a large speed improvement when compared to the linear search. Thus the
binary search is to be preferred, but, remember a binary search only operates on a sorted list and
the time taken to sort must also be taken into consideration.

The efficiency of sorting algorithms can be compared by considering the number of comparisons
and the number of swaps.

The bubble sort and selection sort both have two loops and these are related to n. Hence we can

initially say that both will have a time efficiency of nZ i.e. each in loop step is repeated nXn times.
Let us confirm this by looking at the number of comparisons made for both.

The first loop of the bubble sort makes (n-I) comparisons and the next loop (n-2) and so on until
only one element is left.

Thus the number of comparisons is the sum of the series (n-l)+(n-2)+(n-3)+1. This sums to
n(n - 1)

2

n(n-I)
2

nZ n n= "2 - 2.As n gets bigger the 2 term has only a small effect thus we can

Z
say that the number of comparisons tends to n

2
.As n gets big nZ and ~ are very large and we can

thus use nZ as the efficiency indicator.

320

Computer Science

Thus the efficiency of bubble sort and selection sort are said to be of order n2.

Remember that the bubble sort is useful for lists that are nearly sorted. You can pick up if the list
is sorted by the fact that, if no swaps occur, then the list is sorted.

If we take into account the number of swap operations, we get a similar picture.

In the bubble sort there are 3 swaps each time we interchange values. Thus, in the worst case,

there would be 3 swaps for each comparison (3(~2 -~)) and for the average case this would be

divided by 2 to give (~(n22 -~)).

As n tends to get big this would approach 3~2 which we can estimate as n2
. The selection and

insertion sorts are similar.

The quick sort is much faster than both these. Each time we perform a section of the quick sort on
a partition we perform n comparisons. We also perform log2n divisions of the list. Thus the

number of comparisons is equal to the number of comparisons performed per sub-list or partition.
In mathematical terms we have an efficiency of nlog2n.

So far we have considered approximations by looking at the case where input is large because the
list of data is long. We have also looked at the average and worst case situations.

Another rule of thumb worth mentioning is, when considering the efficiency aspects of the
operation of a computer, consider only those operations that take the longest time or that operate
most frequently.

The Big 0 notation

We have already mentioned the most significant results, but not in terms of the use of the 'Big 0'
notation.

The Big 0 notation allows us to use a mathematically based approximation system for stating the
efficiency estimates. Its aim is to provide an estimate of the upper bound for time performance or
memory usage.

Mathematically this can be stated in the following way.

Iffand g are time measures. Then f is O(g) if there exists a number k such that the following holds
fen) ~kg(n)

This means the time complexity function is bounded as n gets big or approaches infinity.

Let us apply this to the bubble sort example.

We know that the time complexity function is f(n)
n2 n= 2 - 2· To use the Big 0 method we need

to determine the upper bound ofthe complexity functionftn) by solving the following inequality.

fin) ~ kg(n)

321

1;
1;
i=2; i<fib.length; i++)
= fib[i-I] + fib[i-2] ;

Advanced Data Structures and Algorithms

n2 n"2 - 2 ::;; kg(n)

The left hand side of this inequality is always going to be less than n2 . Thus k =I and

g(n) = n2 . Thus we can say that the functionfis O(n2). i.e. order of magnitude n2. This means
that if the list doubles the length of time taken to sort the list increases four fold. The Big 0
method gives us an upper bound of the dimension of the 'fastness' given the parameter n, which
is usually the length of the list of data.

It is often the case that time functions can be represented as polynomials. In determining the Big
o function for larger more complex polynomials we can ignore constants and ignore lower-order
terms. An example will help explain.

This equation states that the time for the program to run is related to the length of the data set by

the function fin) , which in this case is the 5th order polynomial.

We know thatfin) ::;; 4n5+3n5 + 2n5 + n5 +5n5 ,just by increasing the powers of the terms.

Thus fin) ::;; l5n5 , by collecting like terms. This satisfies our condition.

Hence we can say thatfhas the time complexity of O(n5).

Efficiency comparison of various ways to calculate Fibonacci numbers

In the recursive implementation of the Fibonacci sequence we have a situation where many
redundant functional computations take place. In fact, in the worst case, we have that fib(n) ~

O(2n) repeated calculations. As functions use stack space in memory to store return addresses, a
recursive solution is also a heavy user of memory.

It would be better if we calculated each element of the sequence only once.

We can improve the efficiency of the calculation by storing the terms of the sequence in an array
as shown in the algorithm below, which has time complexity of O(n). It also requires memory
allocation directly related to the size of the list n i.e. O(n).

void loadFibValues(int size)
{

int [] fib = new int[size]
fib[0]
fib[1]
for (int

fib[i]

To get the value of the 10th Fibonacci number you would access the index position 9 (remember
we start at 0) of the fib array Le. fib[lO].

This is a much faster implementation but does require O(n) memory space.

322

computer :)clence

Summary of complexities

• 0(1) : constant time not related to the length of the data set.

• 0(1og2n) : log time and is fast.

• O(n) : Linear time.

• 0(nlog2n) : n log n time.

• 0(n2) : quadratic time, polynomial complexity.

• 0(n3) : cubic time, polynomial complexity.

• O(nn) : not computable.

Infeasible or exponential time complexity measures include 0(2n), 0(3n), O(n!). Algorithms with
such characteristics shown can be avoided as it is likely that as n gets bigger a solution will not be
possible.

Summary of common 0 complexities

• Linear Search O(n)

• Binary Search 0(1og2n)

• Bubble Sort 0(n2
)

• Selection Sort 0(n2
)

• Quick Sort 0(nlog2n)

In terms of algorithms involving loops the following rules of thumb apply:

• If there is a single loop the time complexity is related to n i.e. O(n).

• If there are two loops the time complexity is n*n i.e. 0(n2).

• If there are three loops the time complexity is n*n*n i.e. 0(n3).

EXERCISE 5.20

1. State the efficiency of the various searches presented.

2. State the efficiency of each of the sorting algorithms presented.

3. For the algorithm presented below estimate the time complexity and storage space
requirements i.e. what is the dimension of the array?

for (J = 0 to N) do
for (K = N to 2N) do
A[K] K+J

4. Show that an algorithm with a time function of fen) = IOn3 - 4n2 + 2n + 4 has an order

of magnitude estimated time of 0(n3).

5. Verify, by drawing a tree structure to show the calculation, that a recursive Fibonacci
function performs repeated calculation.

323

Advanced Data Structures and Algorithms

© IBO 5.6.3-4
2004

ORCiANISINCi AND EVALUATINCi DATA
STRUCTURES AND ALCiORITHMS TO SUIT
PROBLEMS

When selecting data structures, we need to be aware of the type of data to be stored, how it will be
manipulated and how it will be stored in RAM and on disk. It is important to ensure that the
chosen data structure facilitates efficient storage, access and processing.

Arrays are static structures but they allow direct access to data elements via the array index.
Arrays have to be sized to account for the worst case to avoid out of bounds overflow errors,
which means that large amounts of space may not be used. Addition to, and deletion from, the list
facilitate a number of 'shuffling' actions that take time. A time measure is proportional to the
length of the array or, to be more precise, the length of that part of the array affected. Hence we
can say that an insertion or deletion has an order of complexity proportional to the length of the
list i.e. O(n), and O(n) to locate the insertion point. Arrays allow data to be sorted and very
efficiently searched by use of the binary search. Data in arrays can also be processed sequentially.

Data stored in a dynamic structure such as a linked list has no memory space limit placed on its
length other than the available memory. Data can be easily inserted and deleted in basically one
operation. It is certainly not related to the length of n i.e. it has a time complexity of 0(1). But the
list must be searched for the location of the item in the list. This is also the case for elements in an
array, unless some hashing algorithm is used to locate its index position directly. Thus both have
O(n) complexity in terms of locating the item. Dynamic structures are very efficient of memory
because they grow and shrink to suit and do not need to be sized for the worst case scenario.

Data in an array can be sorted and searched using a binary search which has time complexity of
0(log2n). However, data has to be kept in sorted order and, by using a quick sort, we can perform

these operations in 0(nlog2n).

Data in a linked list can also be kept in sorted order but cannot be searched other than by using a
linear search that has time complexity of O(n). However, if searching was required, a binary tree
dynamic structure could be used. Depending on need, this could be a separate structure i.e.
doubling memory. A binary tree can be searched in 0(log2n) time.

Consider the problem of working out which sequence of numbers has the greatest sum in a
sequence of n positive and negative numbers.

For example, consider the list 1,6,-8,9,1. The possible sub-lists are enumerated below.

1=1
1+6=7
1+6+-8=-1
1+6+-8+9 = 8
1+6+-8+9+1 = 9

6
6+-8 =-2
6+-8+9 = 7
6 + -8+9 + 1 = 8

-8
-8+9 = 1
-8+9+1=2

324

Computer Science

9
9+1 = 10
1

By this exhaustive process we have the maximum subset being 9+1 =10.

A slow way to solve this problem is to use three loops as shown below. The outer loop controls
the starting position, the next loop controls how long each sub-set of numbers is and the
innermost loop allows the numbers in the current sub-set to be totalled and compared to the
maximum.

int maxSubset (int seq[J)
{

int max = 0;
int sum = 0
for (int start 0; start<seq.length; start++)

for (int end = start; end<seq.length; end++)
{

sum=O;
for (int j = start; start<=end; j++)

sum = sum + seq[jJ ;
}

if (sum> max) max = sum;

return sum;

The outer loop repeats n times and the inner loops repeat approximately ~ times each.

n n n3
We can applythe efficiency analysis as n * 2 * 2 :: "4 .

3
In terms of the Big a notation we have ~ ::; n3 , hence we can say that the algorithm has a time

efficiency of O(n3).

We can improve this algorithm by noting that we can remove the second loop. It is not needed.
All we need do is control a start position and then exhaustively look at each sub-set from that
point. To do this we need only have an inner loop.

int maxSubset (int seq[])
{

int max = 0;
int sum = 0;
for (int start

for (int end
)

sum =0;
if (end

0; start<seg.length;start++)

start; end<seq.length; end++)

start) sum =0;

325

Advanced Data Structures and Algorithms

else sum =sum + seq[end]
}

if sum > max then max = sum

return sum;

This gives an efficiency improvement reduced to 0(n2). We should also note that both the
solutions above have a memory efficiency of O(n) i.e. the data has to be stored as a list in
memory.

It is important to try and concentrate on macro optimisation like this rather than fiddling with
reducing the number of comparisons performed or if statement tests.

The principle of dynamic programming can be applied to reduce the time complexity even
further. Dynamic programming works on the principle of solving large problems in terms of the
solution to earlier smaller problems.

Look at the exhausted list of all possibilities. One way we could approach the problem is to keep
a running total of the sequences and store the maximum as we go. At each stage we could test to
see if the addition of a new value reduces the sum to less than zero. If it does we can ignore it as a
possible candidate. The maximum to this point has already been stored so we can set our running
total back to zero and continue. If the new total is positive, but reduced, we have no way of
knowing if the next number added will make the sequence exceed the current maximum, hence
we keep going. At the finish of each step we test to see if the maximum needs to be changed.

The new algorithm has time complexity of 0(11), which is a major improvement. An algorithmic
implementation is shown below. Assume the array n[] holds {I ,6,-8, 9,1};

int maxSubset (int seq[])
{

int max = -999; prev =0;
for (int i = 0; i < seq.le~gth; i++)

if (n[i]

else
+ prev) > 0)

prev = 0;
prev n[i] + prev;

if (prev > max) max
endif

return sum;

prev;

The trace of this algorithm shows the following sequence of events.

prev=O
i=O n[0] = 1
1 + 0 > 0 thus prev 1
max 1

i=l n[1] = 6
1 + 6 > 0 thus prev 7 (1+6)

2"~

Computer Science

max = 7

i=2 n[2] = -8
-8+ 7 < 0 thus prev 0
max 7 (stays put)

i=3 n[3]
9 + 0 >
max

= 9
o thus prev

9 (changes)
9 (9+0)

i=4 n[4] = 1
1 + 9 > 0 thus prev
max = 10

10 (1+9)

Thus the maximum sub-sequence is 10. The new algorithm has reduced the time complexity to
O(n) and in fact there is no need to store the numbers in the sequence.

EXERCISE 5.21
1. You are required to store up to 10,000,000 items in an appropriate data structure. You are

required to add and delete items and search the data structure often. What are the
complexity implications for different data structures e.g. linked list, array, binary tree etc.?

2. Study the efficiency issues associated with the following situation and recommend a
possible course of action. It is necessary to store between 2,000,000 and 4,000,000 records
in a file. Data records are frequently being added, deleted and edited.

3. Study the efficiency issues associated with the following situation and recommend a
possible course of action. A file that contains 10,000,000 records is to be organised as a
sequential access file. Over time, it is realised that 90% of the time only 100 records in the
file are accessed.

4. Why would be it more important to make macro improvements to an algorithm process
than to spend a lot of time making small micro level changes?

5. Contrast the efficiency of the two Fibonacci programs given previously, by comparing the
recursive and iterative version that loaded the values into an array. The Java System class
provides a method to record the current time: long startTime=System.currentTimeMillisO;
Use this method to record the time taken by the two methods.

6. Use the currentTimeMillis() method to compare the efficiency of the various sorting and
searching methods you have been given.

7. Create an array of random integer values and dimension the array to 1,000,000. Compare
the time taken to locate the last value using a linear search as compared to a binary search.

aaaaaaaltaaaaaa

327

Advanced Data Structures and Algorithms

328

Chapter contents

6.1 CPU Configuration
6.2 Disk Storage
6.3 Operating Systems and Utilities
6.4 Further network fundamentals
6.5 Computer/Peripheral/Communication

329

Computer Science

Further System Fundamentals

~6~26.1 CPU CONFIGURATION
A basic model of a processor (central processing unit) is shown in the diagram below. The model
shows the control unit, arithmetic logic unit and primary (or main) memory, more commonly
referred to as RAM or random access memory..

Figure: 6.1

Control Unit (CU) --. .-
Program Counter (CU) .---.CACHE RAM

I I 1-+ ~

Instruction Register (lR) Memory (Address)

Bus
I I

Memory Address
'--- ROM

Register (MAR)

~

I
Decoder

I
~

Arithmetic Logic
Unit (ALU) Data Bus

Accumulator

I I

The CPU is the central part of the computer that performs most of the calculations. On a PC the
CPU is a single chip or micoprocessor housed on the 'mother board'. The mother board houses
the processor unit or chip, RAM, cache, memory and data bus and connectors to the external bus
and to other controller cards and I/O devices. On larger computer systems the CPU may be spread
over a board containing more than one chip. The processor unit contains the control unit and
arithmetic logic unit.

The control unit controls the operation of the CPU. It coordinates the retrieval of instructions
from memory, decodes these and then executes them.

The arithmetic logic unit (ALU) performs all arithmetic operations, such as addition and
subtraction and comparisons like tests for equality of the contents of memory locations.

Memory is divided into two separate parts: read only memory (ROM) and random access
memory (RAM). The RAM of the computer is where the current data and executing program
instructions are stored. Each location of RAM has an address and contents. The instructions and
data are stored as the contents. Instructions are made up of two parts: the opcode and the operand.
The contents of memory are transferred into the CPU registers via the data bus and the memory
addresses are accessed via the memory address bus. RAM is a volatile storage area requiring an
electrical current to maintain its state.

ROM is used to store permanent operating system instructions that are required to boot and

330

Computer Science

operate the computer. They cannot be changed. The code to boot the computer is stored in ROM
and executes automatically when the computer starts. The code that operates for each interrupt is
also stored in ROM in fixed positions.

~6~'? 6.1.112FUNCTIONS OF THE ACCUMULATOR, INSTRUCTION
REGISTER AND PROGRAM COUNTER

The control unit has a number of registers. A register is a location that temporarily stores data or
memory addresses that are going to be used by the current cycle of the computer.

The basic registers in the control unit are:

• The program counter (PC) holds the address of the next instruction in the program sequence.
It is assumed to be the next instruction and is automatically incremented, unless the
executing instruction modifies the contents of this register via a jump or branch instruction.
The automatic incrementing is a fundamental part of the design, or architecture, of the chip.

• The instruction register holds the opcode of the instruction that is about to execute i.e. the
type of instruction e.g. ADD, MULT or STORE.

• The memory Address register holds the operand (memory address) of the data to be used by
the instruction or the location to which data", ill be written by the instruction that is about to
execute (Note: not required in HL).

The ALU has a special register called the 'accumulator'. This register holds the ongoing total of
any calculations being performed.

The instructions stored in a computer are in machine code format and are a sequence of Is and Os.
Machine code is code that is in a form ready to be executed directly by the hardware. In general,
the process of compilation converts the higher level language source code into machine object
code. Compilation creates an entirely new object code program and an interpreter converts source
code a line at a time. A machine code instruction i~ made up of the opcode and operand. Machine
code can be written using an assembler language that uses a mnemonic system to allow
programmers to refer to an instruction opcode using mnemonics such as ADD to indicate the add
instruction. Operands can be referred to by use of normal variable type names. There is a one to
one correspondence between a single machine code instruction and an assembler instruction.

A simple assemble language could have these opcodes:

• LOAD memory location X: gets the contents of memory location X and overwrites what is in
the accumulator.

• ADD memory location X: adds contents of X to accumulator.

• MULT memory location X: multiplies current contents of accumulator by X.

• STO memory location X: moves the contents of the accumulator to the contents of memory
address X.

Using these sets of instructions we could write an assembler program to implement the logic of
this assignment statement Y=P + (A*B). Assume P =2, A =3 and B =4.

Our assembler code would look like this:

1000
1001
1010
1011

LOAD A
MULT B
ADD P
STO Y

33l

Further System Fundamentals

Note that memory addresses have also been added. You can assume that these are the last four bits
oflonger 16 or 32 bit addresses.

The program would be loaded into RAM and the PC set to hold the address of the first
instruction. The steps followed to execute the program are explained below.

~l~.? 6.1.3 FUNCTION OF THE INTERRUPT REGISTER
Interrupts are the way a processor is able to handle the demands made of its processing time.
There are two types of interrupts: hardware interrupts and software interrupts. A processor is
basically able to do one thing at a time.

When a processor is running a program, a number of other things can happen that may require the
processor to stop what it is doing to service these requests. This is what happens when you are
typing on the computer and the phone rings. You stop typing and answer the phone. When you
have finished, you resume typing. The phone ring is acting as an interrupt.

Hardware interrupts are linked to the physical architecture of the computer and usually are
designed to allow devices to communicate and gain the'attention' of the processor when the
device has a problem or wishes to send or receive data. A printer, for example, may wish to report
an 'out of paper' error or a modem may wish to send a stream of data.

Software interrupts operate similarly to hardware interrupts except that the condition that needs
responding to is generated by the processor itself. When an EVENT or EXCEPTION occurs that
requires handling, a specific piece of software, designed for the purpose, is executed. Java, for
instance, allows a range of exception errors to be handled. Examples include attempting to read
past the end of a file or accessing an index beyond the dimension of an array.

The code to handle hardware interrupts is stored in memory in fixed positions starting from a
fixed memory position or base address. To access the desired interrupt software, the memory
offset position is required. When a device indicates an interrupt by sending a signal to the
appropriate port, the interrupt register is updated with the offset position of the start of the
handling code in memory. The address of the required interrupt code can then be calculated as:

Interrupt Code Address =base address + interrupt register.

When the interrupt is detected, the current states of the processor's registers are stored
(PUSHED) onto a stack and the interrupt is executed. The processor returns to its prior state by
POPPING the register values off the stack.

Figure: 6.2 - Interrupt Register Operation

Load into processor

and execute~

Interrupt register

I ? I
l

Offset (0)

Retrieve code
for intemlpt

B+O

332

..,
Interrupt 3

Interrupt 2

Interrupt 1

Interrupt Base
B

©IB06.1.4
2004

Computer Science

ROLE OF A BUS TO LINK THE PROCESSOR UNIT,
RAM, ROM AND CACHE

What is a BUS?

A bus is a set of parallel wires that allow bits to be transmitted over one of the single wires. Buses
can be internal or externally connected to the CPU and to the I/O ports of the main control board.
For example, a disk drive controller is connected to the CPU via a bus. The CPU's control unit
also controls the timing of operations via a control bus.

There are two main types of buses within the CPU.

Data Bus

Data is moved around within a processor via an internal bus called the 'data bus'. The registers of
the CPU are linked to the contents parts of memory addresses so that the data held in the memory
can be transferred to the appropriate register. For example, in the STO Y assembler command the
contents of the accumulator are shipped to the contents part of the memory address Y via the data
bus.

Memory Bus

When memory address (location) information is moved around inside the CPU it is moved via the
memory bus. A control bus is also used to synchronise the activity of the CPU. Each wire of a bus
matches to an individual bit in the address of a memory location or individual bit in the contents
part. Thus a bus size determines the amount of memory that can be addressed. For example, in a

32 bit computer the memory bus needs to be 32 bits wide to enable all the 232 different memory
addresses to be accessed.

The role of CACHE

Memory cache is a 'speed up' mechanism. It is RAM memory made up of memory chips that are
faster than the normal memory. This means that the data can be retrieved faster than from
standard RAM. Cache is best thought of as sitting between the CPU and the main RAM as shown
in the diagram below.

Figure: 6.3

CPU ~..==========~~ CACHE ...==========~~ RAM

The role of the cache is to store the most recently accessed memory addresses and their contents.

When an address is required, the first place the CPU looks is the cache. If it finds the address the
operation continues using the data found. Otherwise the data is found by accessing the standard
main RAM area. When data is found in the cache, it is referred to as a 'cache hit'. The higher this
hit rate is, the faster the performance.

Most cache is internal and built into the architecture of the computer, however it is also common
to have external cache available via expansion cards.

The way that data is updated in the cache also contributes to performance. The two main
algorithms are referred to as 'write-back' or 'write-through'. The write back algorithm only
updates changes to the data in the cache, whereas the write-through algorithm updates the data in
cache as well as the main memory. Hence this is a bit slower but safer.

333

Further System Fundamentals

Data and memory addresses moved in and out of cache are effected using the appropriate bus.

Disk units can also operate a cache located on the disk controller. This speeds up access times.

Internet servers and PCs can also operate a cache by storing the most recently accessed web data.
This speeds up operation if what is required is~tored in the internet cache because it can be
retrieved from the local storage area.

EXERCISE 6.1

1. Describe the function of the accumulator.

2. Describe the function of the instruction register.

3. Describe the function of the program counter.

4. Describe the function of the interrupt register.

5. Describe how the buses link the processor to RAM, ROM and cache.

6. Draw and clearly label a diagram of the processor showing the major components and
buses.

:a:a:a:a:a ..

~6~26.2 DISK STORAGE
Hard disks record data by magnetising the binary code on the surface of a disk. The data area is
reusable, just like other magnetic media. Files can be deleted or re-written. Hard disks allow both
sequential and direct access file organisation. Hard disks have many platters and both the top and
the bottom surfaces of each platter, except for the top and bottom platters, are used.

Figure: 6.4

Tracks

Platter

\
/

Cylinder

Read/write heads

There are also fixed and removable disk drives.

The floppy disk, so called because the disk is flexible and housed in plastic, operates on the same
principle as a hard disk. It has a single platter and is a convenient method of storage. It is cheap

334

computer :SCIence

and has a reasonable capacity for text based storage. However, access is slow, the storage is
limited and the disks can easily be damaged. Access is also much slower than access to a hard
disk.

There are also optical disk drives that allow data to be read from CD-ROMs. The data cannot be
altered, only read by a laser beam shining on the surface. The binary bit pattern is encoded at the
time of production (writing) by a stamping process. The plastic surface is stamped with pits and
'land areas'. The changes from pit to land or land to pit represent binary ones and zeros with the
pits absorbing, and the land areas reflecting, more of the laser light.

There are also erasable optical disks referred to as magneto-optical disks that alIow data to be
read and written many times in a comparable fashion to a hard disk.

Hard disks can also be grouped together to form what is known as a 'Redundant Array of
Independent Disks' or RAID for short. Such grouping alIows very large amounts of storage that
can be accessed quickly and which provides a range of data protection features.

When data is written to a RAID disk it can be spread across a set of disks. This improves
performance by taking advantage of paralIel access across the many disks. This feature can also
be combined with disk mirroring which provides a fault tolerance feature. Disk mirroring means
that the data is written to duplicate disks. This technique is vital if the system needs to be
accessible at all times.

© IB0 6212004 •• ROLE OF BLOCKING, SECTORS, CYLINDERS AND
HEADS IN STORAGE

Blocking: the block size determines the number of bytes that are read and written in a single
physical read or write operation on a hard disk. The blocking factor is usualIy more than one disk
sector and is also known as 'cluster size' .

Sectors, Tracks and Cylinders

A disk surface is divided into a number of separate circular tracks and these are, in tum, divided
into sectors. The collection of the same track on all the surfaces of the platters in a hard disk are
referred to collectively as a cylinder of tracks i.e. the same track on each surface.

The capacity of a hard disk is determined by the number of tracks per surface, the number of
sectors per track and the number of bits or bytes per sector.

A floppy disk has a single platter with a top and bottom surface. A high density floppy has 160
tracks on 2 sides with 9 sectors per track and 512 bytes per sector. The capacity is given by the
equation below.

capacity =number of surfaces x number of tracks x number sectors per track x bytes per sector

Data can be stored around the tracks in the sectors. Direct access is possible by specifying the
required track and sector. In this way the data is retrieved without reference to the other related
data. This is in contrast to sequential access.

Data stored downwards in cylinders can be retrieved using a paralIel technique utilising multiple
read and write heads.

Read/write Heads

The data is read from, and written to, a disk sector by use of the read and write heads that are
located on an arm. The read and write arm can be fixed or moveable. Fixed read/write arms have

335

Further System Fundamentals

heads for each track and can read many sectors at the one time down the cylinder in a parallel
operation. A moveable arm has one set of read/write heads and these move across the surface of
the disk.

~6~2 6.2.2 DISK ACCESS TIME
Disk access time is made up of two components. The first component is a 'seek time' which
occurs whilst the read/write arm seeks the desired track. The second component is a wait or
latency time which is incurred as the head write arm waits for the desired sector on the track to
spin around.

Access time can be specified as a relationship as follows:

Access time =track seek wait time + sector wait latency time

Data on disks is accessed in times that are measured in terms of milliseconds. This is much
slower that the processing speeds of CPUs. I/O is still slow and, whilst improvements have been
made in this area, they do not match the speed improvements of processors.

EXERCISE 6.2

1. Outline how a disk drive operates.

2. Outl ine the role of the disk drive heads.

3. Define the term 'disk sector'.

4. Define the term 'cylinder'.

5. Define the term 'latency' or 'rotational delay'.

6. Define the term 'seek time'.

7. Define the term 'access time'.

8. How does seek time differ from access time?

9. Describe the access time to a hard disk with reference to the latency and seek times.

336

DEFINITION OF THE TERM OPERATING SYSTEM

Computer Science

~6~26.3 OPERATING SYSTEMS AND
UTILITIES

© IBo6.3.1
2004

An operating system (OS) is required for all general purpose computers to function. The OS is an
example of system software. It controls the operation of the computer system by managing the
execution of programs, allocating resources, scheduling, controlling input and output operations
and management of data.

Operating systems can be classified as:

Single User: Allows the operation of the CPU by one user or task. The traditional DOS
environment on a PC was a single user system in that only one user could use the system at any
one time.

Multi-user: Allows the operation of the CPU by more than one user or task. The single CPU
shares out its time between the demands of the users or tasks running at anyone time.

Mutiprocessing: Allows the running of a program across a number of CPUs.

Multitasking: Allows a single user or task to run more than one program at the same time. A
single user system can also have this capability.

Multithreading: allows the multiple parts of a single program to run at the same time.

~6~2 6.3.2 FUNCTIONS OF AN OPERATING SYSTEM
An operating system must:

• handle the execution of programs.

• monitor input via input channels such as the keyboard and other input ports.

• control output over the various out channels and ports e.g. disk drives, tape units, printers,
modems, display to screen etc.

• manage the file system: create, edit, delete, copy etc.

• manage security measures: password checking and storage, access rights, disk space
protection.

• manage memory allocation and swapping to ensure that clashes do not occur and one user's
area is protected form being overwritten by another task or user's program.

• manage the operation of virtual memory where a hard disk surface is used as a paging
surface to expand available memory.

Utility software: provides a basic function or performs a particular task such as copying data
from one location to another.

EXERCISE 6.3

1. Define the term 'operating system'.

2. Outline the key functions of an operating system.

••.•• • ·a a a a a a a a a

337

Further System Fundamentals

© IBO 6.3.3 OUTLINE THE FUNCTIONS OF LINKERr LOADER AND
2004

LIBRARY MANAGER.

Linkers: a linker combines compiled object code modules supplied by the programmer with
programs from the runtime library of standard function modules e.g. input and output modules
supplied by the programming environment to form the executable object code program.

In Java the process is initiated by lines of source code such as import java.io.*

The linker also replaces symbolic addresses e.g. the variable int x with the real physical memory
address.

The linker will also link any operating system modules required to handle such issues as direct
calls to the I/O system.

Loaders: loaders copy the linked object code into the main memory so that the linked program
can execute. Loaders are examples of an operating system utility program.

Library Managers: a library manager allows central library functions to manage the library
functions that are used by the linker. It allows library functions to be added and compiled.

EXERCISE 6.4

1. Define the term 'operating system'.

2. Outline the key functions of an operating system.

3. Outline the functions of a linker.

4. Outline the functions of a loader.

5. Outline the functions of a library manager.

••••••••••••••

© IBo64
2004 •

© IBo6.4.1
2004

FURTHER NETWORK
FUNDAMENTALS
THE ROLE OF COMPUTERS IN DIFFERENT
NETWORKS

Network Server computers: computers that control the operation of the network. The network
server has a network operating system and will enable a range of server based applications e.g.
shared databases to be available to users of the network. The network server will control security
via a login process, controlling file access levels of users and via interaction with the network
firewall or proxy server.

Client computers: clients are computers that are typically operated by users to access the
services provided by the network server computers e.g. printing, accessing application servers or
access to the ISP and the Internet. Client computers need to have client software installed so that
communication can take place between the client computer's operating system and the network
server's operating system.

338

\

Lompmer ;')clence

Providers' computers: Providers deliver access to the Internet i.e. Internet Service Providers and
to other dedicated databases. Providers' computers are basically network servers that are
dedicated to controlling access to the Internet and communications between the user's client
computer and the local network server.

Gateway computers: Enable connection from one network to another, e.g. from a LAN to a
WAN. Whenever you login to a LAN i.e. connect to the LAN's network server and then access
the Internet, you are utilizing a gateway. Gateways are implemented using a combination of
software and hardware. Gateways are more than a simple connection. They pass data packets
through complex security and filter operations when implemented as a proxy server or firewall.

Figure: 6.5

A LAN (e.g. ",hool netwo,k) mO PC Client eomputec;

::k------.---L-------.----,-'J::: 1_------" PC

PC Connections, g
typically cable. printer

Gateway computer

~ Network Server

~ -1

Provider computer

~6~~6.4.2 PRINCIPLES OF NETWORKING
The principles of networking cover the following: connection, mode of transmission, network
architecture, role of communications software. These principles are now outlined in more detail
in the following section.

Remote connection

To utilise a network, a device must be able to physically connect to it. Individual users who are
located in their homes and wish to access the Internet or remotely access their work place
computer system need to be able to physically connect their computer to 'something' to enable
access to the required computer system.

This is typically done via use of a telephone system. Users need to connect a device called a
'modem' to their computers and then connect the modem to the telephone system.

Modems can be internal or external to the user's computer. A modem operates by converting a
digital signal from the computer into an analog voice signal that is transmitted over the telephone
line. At the receiving end another modem converts the analog signal back to a digital signal. The
term modem stands for MODulator-DEModulator.

339

Further System Fundamentals

Modems can transfer at various rates: 9600, 14400,28800,33600,56800 bits per sec.

Direct connection with a network

Users within an organisation who wish to connect their computers to the organisation's network
require the use of a network card and network connection software. The network card enables the
physical connection and allows data to be sent and received. The network communications
software is called by the user's computer and facilitates the connection to the main network
communication software located on the network server. To the user, the accessing of other
networks such as the Internet is handled by the network server.

MODE OF TRANSMISSION
Data transmission

Data is transmitted in small packets comprised of individual bits (I or 0). Hence the rate of
transmission is measured in terms of bits per second. The standard telephone line can transmit
data at up to 56,800 bits per second and includes the following rates 9600 or 9.6Kbps, 14400 or
14.4Kbps, 28800 or 28.8Kbps or 33300 or 33.3Kbps or 56800 or 56Kbps. Thus, a standard phone
line can provide a range of speeds and this range is referred to as the BANDWIDTH of the
transmission channel. These transfer rates can be described by the terms 'voice' or 'medium
band' or 'bandwidth'.

Broad band is a term used to describe the larg~ transmission rates offered by use of microwave,
satellite, cable or fibre optic cables.

Serial and parallel transmission. Serial transmission is the process of transferring one bit at a
time and parallel transmission is the process of transmitting more than one bit simultaneously.
For example, an 8 bit byte could be transmitted using 8 separate connections. Serial transfer mode
is what is used to transmit data using a modem and is used for long distances. The modem's
connection cable is plugged into the serial communications port of the PC. Parallel transfer is
faster but is used only over short distances e.g. with a CPU to move data from one location to
another in memory.

Direction data transmission

There are three modes of data flow used: simpl~x, half-duplex, full-duplex.

Simplex communication allows transfer of data in only one way. Half-duplex communication
allows data to be sent or received i.e. two way hut not at the same time.

Full-duplex communications allows data to be sent and received at the same time.

Asynchronous and synchronous transmission

Asynchronous transmission means that data is sent in small amounts at any time. There is no
attempt to accept all the transmission in one large amount. Synchronous transmission requires
that the data be sent in larger blocks in a timed manner. This allows for faster volume of transfer.

Communications channels

Telephone lines:

Coaxial cable:

traditional phone cables use a twisted copper wire. They allow the
connection of PCs via modems over the telephone system.

this is a thick cable that allows modest transfer rates. It is usually seen in

340

Computer Science

peer to peer or bus networks.

Twisted pair:

Fiber-optic:

Microwave:

Satellite:

very common in LANs; more expensive than coaxial cable but offers higher
bandwidth.

uses single glass tubes to transmit pulsed light waves to code the digital
sequence. Offers high speed and increased capacity. Can transfer at a rate of
26,000 times faster than a standard phone line. They are expensive but are
small in physical size and light in weight. They do not generate any
electronic signals that can be monitored and hence offer a high degree of
security.

use line of sight transmission of very high frequency radio waves
(microwaves) to send and receive data streams. Offer a convenient way to
transmit data without the need to have physical network infra-structure.
Offer a variety of transfer rat~s of up to 2 Mbs per channel.

orbit the earth in fixed position. Can be used to relay radio signals.

NETWORK ARCHITECTURE
The components of a network need to be placed into a network design that allows the activities
and resources of the network to be shared and accessed by users of the network. Network
architecture is the term used to refer to various alternative ways of designing a network.

There are several terms that need to be defined in terms of networks:

Node: a component such as a PC or printer connected to a network.

Client: a client is a user of services on a network. A client makes requests for services, such as a
printing request to a printer server.

Server: a server responds to requests from clients for access to a resource. Thus a file server
provides access to files, a printer server provides access to printers, a communications
server provides access to the Internet and a database server would provide access to a
shared database.

NOS: a network operating system (NOS) enables servers and clients to interact on a network
and allows users to use the services of a network. Network operating systems are
different from normal operating systems that control the operation of a single computer.
Novell's netware is a commonly used network operating system used to operate Novell
LANs.

FEATURES OF COMMUNICATIONS IN NETWORKS
Ethernet: an architecture used to control data communication between servers and clients within
a LAN. Commonly operates at 10 Mbps, but can operate at speeds of 100 Mbps to facilitate high
volume applications such as multi-media. The Eth~rnet standard is typically implemented using a
Star network topology, but can be implemented using a Bus topology. Star implementations
require that each physical device be connected to the network server via a single cable. Hubs are
used to connect many devices to a single high speed connection which in tum can be connected to
a further hub and so on until the final connection into the server.

341

Further System Fundamentals

Public and Private telephone lines: typically used by home users to connect to their Internet
Service Provider. Public lines enable inter-user connection via a public telephone network,
whereas private lines allow secure dedicated connection between users.

ISDN: Integrated System Digital Network is a standard that allows normal telephone lines to be
used to transmit voice, data and video. The transmission speeds are typically 64Kbps. ISDN can
also be used with fibre optics to gain significantly high throughput. Requires an ISDN compatible
modem.

ADSL: Asymmetric Digital Subscriber Line technology allows very high transmission rates (up
to 9 Mbps) to be achieved using the normal copper telephone lines. Requires an ADSL
compatible modem.

Fibre optic: Uses very small glass tubes to transmit digital data using light waves. Very high
through-put can be achieved and there is far less likelihood of interference, but they are
expensive. LANs often use fibre optic cables to connect hubs to servers or to provide a high speed
backbone to improve transmission speeds.

Wireless: radio waves to enable communication that does not require a cable. The client PC
requires a wireless network card which communicates to the server via communication stations.
Significant advances have occurred recently to enable good performance and to enable multi­
media to be transmitted effectively.

The implementation of these features will vary from country to country. The reader is urged to
relate the above basic theory to way it applies in their case.

Students are not required to know technical detail, but should be able to describe these basic
features and be able to justify why one feature maybe more desirable than another.

Some possible points of comparison are listed below:

• fibre optics are normally not appropriate to connect a home computer to a ISP because of
cost and it simply may not be available as an option.

ADSL is cost effective and gives very high transfer rates and uses the standard phone lines.
Thus it might be a sensible option as compared to using a cable connection.

• ISDN allows the integrated use of the phone system and the transmission of digital data i.e.
you can use the phone and connect to the lnternet using one existing current phone
connection.

• Ethernet is a standard that has stood the test time and therefore one would normally expect an
Ethernet network to be the system of choice.

• Wireless offers the possibility of network connection without the need for a physical cable
connection. This offers significant advantages in terms of ease of use especially in relation to
the connection mobile computing devices such as laptop computers. However, the intended
use in terms of high volume multi-media would need to be assessed.

EXERCISE 6.5

1. Outline the role of a network server computer in a network.

2. Outline the role of a gateway in a network.

3. Outline the role of an Internet Service Provider (ISP).

342

Computer Science

4. By doing some further research, what roles can specific gateways such as firewalls and
proxy play in a network?

5. Describe the key features of the Ethernet standard.

6. Describe the key features oflSDN.

7. Describe the key features of ADSL.

8. Describe the key features of fibre optics.

9. Describe the key features of 'wireless'.

10. In what circumstances would ISDN be preferred to ADSL?

11. In what circumstances would ADSL be considered as appropriate for a home users?

12. In what circumstances is fibre optics to be considered as a communications medium?

13. Compare the advantages and disadvantages of wireless as a way to connect mobile
computing devices as compared to using physical cabels.

••••••••••••••
~68'?6.4.3 PACKET SWITCHING

Definition of data packet

Data is transmitted in groups of bits referred to as data packets. A data packet is typically fixed in
length and its structure is determined by the protocol being used.

The contents of packet typically holds the source address, destination address, the data and a
parity bit or check digit. In a packet switched network, the packet also contains a packet number.

A diagram of a data packet is shown below.

Figure: 6.6

Definition of Packet Switching

Packet switching sends data in individual groups called data packets. A single data transmission is
broken up into individual packets and then each packet is transmitted. The key feature is that the
individual packets need not be transmitted over the same links, but can be sent over the best
available link. The original data transmission that was broken up into packets is then reassembled
at the destination.

The re-ordering is possible because each packet has a separate packet number. Thus the packets
can be re-ordered according to this packet number.

34:1

Further System Fundamentals

Each packet also has a counter which decrements as it passes through a node. If it reaches zero,
the packet is discarded.

The main advantage is that if a link is broken or unavailable during transmission another link can
be used and the transmission can continue. Packet switching is suitable when small delays can be
tolerated e.g. email transmission as compared to real-time video where it is important that there is
no delay in either the sound or pictures. Packet switching is also suitable where data transmission
is not a constant stream or rather where there is a burst of data transmission and then some idle
time before another burst. During the idle time the network link can be used to handle another
transfer.

This method is in contrast to circuit switching which uses a fixed link to send the data
transmission. The advantage is that it can be fast, but subject to failure if a link is broken during
transmission.

ROLE OF NODES IN TRAFFIC MANAGEMENT
As a packet traverses the links, each link is connected via a node and the data traffic is managed
via a router. The router inspects each packet and routes it on to the appropriate link. Network
traffic management involves ensuring that the packets are passed on to an appropriate link and
that congestion is managed so that network performance is maintained.

There are two factors to be considered by the routing algorithms: determining the shortest path
and determining free nodes. Both involve complex mathematical algorithms.

ROUTING OF PACKETS OVER DIFFERENT PATHS
As mentioned above the routing of packets is a fundamental feature of a packet switching
network. A router will inspect the destination address and then inspect the available links. A
traffic management algorithm will be employed to decide which link is the most appropriate to
use. Remember, in a high speed network, a large amount of traffic is entering a single node at any
one time. The router needs to be able to handle each individual packet and enure that it is sent to
the correct destination, but the route that packets take can vary.

PACKET ERRORS
Packet errors can occur as a result of 'collisions' or by 'interference'. In collisions, the same link
is attempted to be used by two packets at the same time. In this case, the router will communicate
with the sender and the packet will be resent.

On arrival, a data packet is checked to see if there have been any transmission errors e.g. parity is
checked. If an error is found, the destination router will request a resend.

Obviously the higher the error rate the slower the performance of the transmission.

~6~?6.4.4 PACKET SWITCHING PROTOCOL
Protocols

Packet switching protocols establish the rules for node to node communication and application to
application communications. The Internet has established TCP/IP as the default standard
protocol. This protocol is a combination of two separate protocols.

The transaction control protocol (TCP) controls the direct links between computer applications
and ensures that the data arrives and is assembled into the correct order. It is a transport level
protocol of the OSI model.

344

Computer Science

The Internet protocol (IP) enables the identification of packets so that the destination or source
address can be determined. It is a packet switching protocol and handles the dividing of the data
into small packets. It is a network-layer OSI protocol.

World Wide Web addresses e.g. www.myWeb.com represents an IP addresses of the location of a
computer or hypertext page or resource on the Internet. Addresses of computers on the web are
known as DOMAIN names.

The IP protocol uses four sets of 8 bit bytes to denote the address. These bytes are used to address
the network and computer on the network.

ROLE OF PROTOCOLS IN PACKET SWITCHED NETWORKS
Protocols play an important role in packet switching networks. In very simple terms, the data
must be split up into packets and then the packets reassembled into the correct order at the
receiving end. This is a very complex process. Rules or protocols are required to govern each
stage of this process to ensure that the data is transmitted and is error free.

~6~~ 6.4.5 NETWORK SECURITY AND HOW IT IS ACHIEVED
Network security is concerned with preventing unauthorised or illegal access to data that is stored
on the network.

There are essentially four main ways that security can be implemented.

NETWORK LOGIN ACCESS CONTROL
Networked computer system applications that go 'live to the world' via the Internet, for instance,
can be accessed remotely via a WAN connection. A user is prompted for a user login and then a
password. Local area network applications are also accessed via the same kind of process.

The operating system authenticates the user by checking a valid user list and the user is then free
to execute commands.

The user list will also allow the system administrator to assign access rights. The top (most
powerful) access level is that of supervisor or administrator. With these rights, a user can run any
command and access any area of the network. Normal user rights can be set to various levels of
access depending on the need for the user to be able to access, view or edit and delete data.

Most networks provide secure private home drive areas where the user has full rights, but users'
rights will be restricted to other areas. For example, a user maybe able to view a file of customers
but not be able to edit or delete records from the file.

Sensitive data can be placed in folders/directories that only certain users have the rights to access.

The essential point is that the computer cannot distinguish between valid and invalid users if the
password is either guessed, left blank or discovered by other means.

In recent times, a range ofbiometic devices have become available to replace or augment the
traditional login. Some of these devices are listed below. Each works by taking a representation of
some biological feature, e.g. finger print, and storing this away as a 'biometic measurement'.
When the user presents again the biometic characteristic is re-measured and compared to the
stored version to achieve authentication.

Some biometric devices include: finger print recognition, eye scanning, face measurement etc.

345

Further System Fundamentals

CONTROL OF ACCESS VIA PERMISSIONS

(LAYERED ACCESS)

Layered access via permissions is a more formal application of the access control discussed
above. The idea is that you need to gain increasing levels of permission to gain access to high
levels of sensitive data or commands.

ROLE OF A FIREWALL
A firewall is a separate component of a network, both hardware and software, that sits between a
private network and the outside world. The firewall inspects data packets to determine destination
and/or the source of the packet. Thus known user access to destinations that users are not allowed
to access can be enforced and known malicious external sources can be denied access.

http://www.interhack.net/pubs/fwfaq/#SECTION00030000000000000000

http://computer.howstuffworks .com/firewall.btm

DATA ENCRYPTION
Data encryption is the process of encoding dala so that it can't be sensibly read without the use of
a key that will enable decoding. Data that is stored can be encrypted so that if it is stolen it can't
be read. Data that is transmitted can also be encrypted to prevent effective interception.

~6~26.5 COMPUTERIPERIPHERAU
COMMUNICATION

~6~26.5.1 DEFINE PORT AND HANDSHAKING
Port

A port enables the interfacing of a device with a computer. It enables data to enter and exit
between connected units. Within a personal computer there are ports that allow the connecting of
disk drives, display units and the keyboard. You can also connect peripheral devices to a range of
external ports such as a modem to the 9 pin serial port or a printer to the parallel port.

Serial ports allow data to be transmitted in the bit stream. The connection can be over a
reasonable distance, but is slower than a parallel connection. Data transmitted over the Internet
from a home PC is sent and received using a serial port connected via a cable to a modem. The
modem typically operates at 56 kbs. More expensive cable modems are available that allow
I Mbs transfer.

Parallel ports allow streams of bytes of data to be transmitted. Thus the 8 bits of the byte are
transmitted at the same time. This improves the rate of transfer but there are restrictions on the
distance over which parallel transfer can take place.

The term 'port' is also used to refer to the way that connections are logically made over the
Internet between a user's computer and the destination computer they are connecting to, using the
TCP/IP procol. For example port 80 is used for http traffic.

Handshaking

The IE glossary definition 'The exchange of predetermined signals when a connection is

346

Computer Science

established between two modems' (IE Subject Guide, 2004, Glossary: © The British Computer
Society, 2002).

'Handshaking' is a process by which two devices initiate communication over a communications
channel. A channel refers to the medium that is used for the communication. For example, an I/O
port connected to an I/O port on another computer via a cable or infra-red beam forms a
communication channel.

The devices then send messages back and forth to establish that the communications protocol to
be used is understood by both devices.

© IB0 6 5 22004 •• DEFINE DIRECT MEMORY ACCESS (DMA) AND
BUFFER

Buffers

Buffers allow the temporary storage of data. The CPU uses buffers to store and manipulate data
before transmitting it to a peripheral device. Buffers are located in RAM and thus occupy free
memory space. They are used to coordinate the faster pace of the CPU with respect to the slower
operation of peripheral devices such as printers and hard disks.

The print operation uses a buffer approach by firstly copying the file to be printed into RAM and
then sending the data to the printer as required, thus freeing the CPU to get on with other things.

Read and write operations to a hard disk often use buffers. The data is written to the buffer area
and this is cleared every so often. This design feature means that the writing is done in a time
efficient manner. Writing does not happen each time a disk write is indicated but at set points
when the buffer is 'flushed' (its contents are written to the hard disk).

Keyboard strokes entered at the command line are stored in a buffer prior to the ENTER key
being pressed. The buffer is used to display the keystrokes on the screen but no action is taken on
the contents of the buffer until ENTER triggers an interrupt that then runs the command
interpreter to see if the contents of the keyboard buffer form a command known to the operating
system. With a single buffer an interrupt is sent to the processor when it is empty. The CPU then
re-fills the buffer. However sometimes, if the processor is busy with more important tasks, the
buffer might not be filled straight away. Therefore two buffers can be used. When one buffer is
empty the interrupt is sent but the data is then read from the second buffer and there is no delay.

Figure: 6.7

CPU
data in transfer

data waiting
data transferred to' ,
peripheral device

347

Further System Fundamentals

DMA

Direct memory access is a design feature of the computer architecture that allows peripheral
devices such as disk drives to access the computer main memory without the CPU being
involved. The feature allows for faster access and can be used to perform backups as a
background process.

If the CPU was directly involved in the process, the data would have to be read into the CPU and
then transferred out again to the destination peripheral. Using this design, large amounts of data
can be read and written to a hard disk without the CPU needing to waste time reading the data in
the normal read and write cycle.

~6~2 6.5.3 DEFINE INTERRUPT AND POLLING
Interrupt

Recall that a standard CPU processes a single instruction at a time. But we can have systems with
many different users (multi-user) as well as systems performing many different tasks apparently
at the same time (multi-tasking) - some of these tasks are carried out without the user necessarily
being aware of them.

It would be very inefficient if all requests to the computer for actions were simply placed in a
queue and worked through in the time order in which they occurred. The computer works at a
very high speed compared to a human. A second may seem a very short time to a human but, to a
computer that is able to perform millions of instructions per second, one second is a very long
time.

This means that the computer can share out its time across a range of conflicting demands. It does
this by allocating small slices of its available time to the things demanding its attention. Some
things require a longer time than others and some are more important than others.

Next time you sit in class and the teacher is issuing some instructions, watch what happens if
someone asks a question. The teacher may say "please don't interrupt me" or s/he may stop and
handle the question i.e. allow the interruption. When slhe has answered the question s/he will
continue on where slhe has left off.

The computer system operates the same way by the operation of an INTERRUPT mechanism.

What things (EVENTS) can cause the computer to suspend what it is doing and HANDLE the
interruption?

A printer malfunction may trigger a hardware interrupt that says to the computer the printer is not
available and this fact needs to be communicated to the user who is currently trying to print.

An ENTER (carriage return) keypress means that the computer has to suspend what it is doing
and handle the command that has been entered.

A program may fail and trigger an exception error that needs to be handled.

The process of the computer detecting an event it needs to respond to is called 'handling an
interrupt' . Interrupts can come from signals sent by hardware and are called 'hardware
interrupts'. They can also come from software and these are called 'software interrupts'.

How does the interrupt mechanism work?

The basic mechanism is that a signal is received by the computer indicating that an event has

'14R

Computer Science

occurred to which the computer needs to respond. The interrupt event handler is then activated.
The computer must suspend what it is doing and then service the nature of the interrupt. When the
interrupt has been handled, the computer resumes operation.

Polling

'Polling' is the process of requesting some service from another device. Polling is used by the
CPU to periodically check certain registers or sensors to see if some request has been made. The
computer then needs to service the request. For example a set of data loggers could be connected
to a central computer to monitor air pollution levels in a city. To read the data stored in the data
logger, the data logger needs to transmit the data to the central computer. This could be done by
getting the computer to periodically poll the data logger to indicate that it is ready to receive the
data. Such a process would be very efficient because each device could be read in tum in an
orderly manner.

The act of polling is also used to determine the readiness of a device to receive data. For example,
a modem can be used to poll the other destination line to see if it is available or a printer can be
asked is it ready to receive.

Summary of interrupt operation:

• Interrupt is sent by a hardware or software process.

• The processor determines what to do.

• The processor responds to current tasks and places current task on stack.

• The processor attends to processing associated with the interrupt.

• The processor pops off stack and resumes.

©lB06 5 4
2004 ••

Printers

EXPLAIN HOW PERIPHERAL DEVICES ARE
CONTROLLED WITH REFERENCE TO PRINTER,
MODEM AND DISK DRIVE

Printers are controlled by the use of polling and interrupts. When a printer is required, the
computer polls the printer to determine its readiness. If it is ready, a hand shaking operation takes
place to ensure that the computer has the necessary printer driver and then the data is copied to a
buffer area and sent to the printer. When the printer has finished, it indicates this to the computer
and the next printer job is sent. A printer may also use a buffer to store the entire document before
it is printed.

Modem

To initiate a connection between two modem devices, a hand shaking routine is undertaken that
establishes that the communication channel is open and that the data transfer protocols are
compatible. Normally the sending modem tries to send at the fastest rate and works backwards
until a match is found. If no connection is possible, the modem signals back to the computer via
an interrupt that the channel is not available. If the data transfer is successful, the modem
indicates that it is free to be used.

Disk drive

Disk drives are controlled via the disk drive controller. The computer indicates that it wishes to
write data to, or read data from, the disk. The controller is detected and the data transferred from

349

Further System Fundamentals

the internal buffer to the controller that coordinates the write operation or the transfer to the
internal buffer area of the computer.

© IB0 6 5 52004 •• COMPARE THE FEATURES OF DMA, INTERRUPT
SYSTEMS AND POLLING SYSTEMS

DMA does not require the intervention of the CPU and thus large amounts of data can be moved
in and out of the computer without the need to use the CPU. This speeds up the operation of data
transfer. For example, backups can be performed as a background process.

Interrupt systems allow the CPU to work without needing to actively monitor devices. As a device
needs the CPU, or wishes to communicate, it activates an interrupt. The CPU is then made to
respond, but it has not wasted time checking if it needs to respond.

Polling systems require the CPU to actively monitor if it needs to do something in relation to a
particular device. The advantage of polling is that it can be done to suit the processing profile of
the CPU i.e. poll during low usage times.

Polling is to be preferred when it is better for the CPU to determine when to deal with a device.
Usually this means that the device can wait and it is not critical that it be serviced immediately.
Interrupts are necessary where the event must be serviced when it occurs. For example, a modem
not responding needs to be detected as it happens, not when the CPU gets around to polling the
line to see if transfer was occurring.

DMA is to be preferred when large amounts of data need to be moved that otherwise would take
a lot of CPU time which could better be used III serving online requrests.

~6~2 6.5.6 COMPARE THE FEATURES OF SERIAL AND
PARALLEL INTERFACES

Serial interface features

A serial interface allows data to be transferred one bit at a time. A serial port is a general purpose
interface and is used by mice, keyboards and modems. The common standards controlling the
way serial interfaces operate are the RS-232C and RS-422 standards. The normal PC has both a
9 pin communication port and a 25 pin D-type port, but not all these pins are used. Serial
communication is possible with only 3 wires: one as the ground signal, one to send and one to
receive.

Data can be sent in either a synchronous or an asynchronous mode and can be sent in both
directions at the one time.

Error detection is possible using an odd or even parity bit.

The length of cable varies depending on the quality of cable used. For example, using shielded
cable and transmitting at 9600 bps, cables can reach 250 feet. If using unshielded cable, the
length is restricted to about 100 feet.

Parallel interface features

Parallel interfaces allow much faster rates of transfer because 8 bits are transferred at one time.
They are commonly used to interface a printer to a PC by direct connection using a 25 pin
centronix standard interface. Parallel ports are also used to connect other peripheral devices that
require faster data transfer than that offered by serial ports.

1'iO

Computer Science

Traditionally the standard parallel port on a PC did not allow bi-directional operation and the
length of cable was limited to very short distances. In 1994 a new standard was developed called
the IEEE 1284 standard that allowed for bi-directional communication over the parallel port, but
not full-duplex. The interface used 17 signal and 8 ground lines. The signal lines are divided into
three groups: 4 control lines, 5 status lines and 8 data lines. The control lines are used to initiate
handshaking with peripheral devices and the status lines are used to communicate the state of
peripherals e.g. indicating errors, busy status or paper status reports. These new standards
increased data transfer rates from around 150 kilobites per second to over 1 mega bytes per
second.

In summary, the serial interface is slower but is simpler to implement and the cable can reach a
reasonable distance. The serial interface allows full-duplex operation for use with, for example, a
modem. The parallel interface allows for much greater throughput, but the connection is more
complex and the cable run is shorter. Bi-directional communication is possible, but not full­
duplex communication.

EXERCISE 6.6
1. Define the term 'port'.

2. Define the term 'handshaking'.

3. Define the term 'buffer'.

4. Define the term 'interrupt'.

5. Explain why buffers are normally used to aid in the transfer of data from a peripheral
device to a computer.

6. Define the term 'controller'.

7. Explain, with reference to appropriate terms from the above questions, the general
operation of a printer.

8. Explain, with reference to appropriate terms from the above questions, the general
operation of a modem.

9. Explain, with reference to appropriate term;; from the above questions, the general
operation of a disk drive.

10. In general terms, compare the features of DMA, interrupts and polling when connecting
an external device to a computer.

11. An external device is being designed to be connected to a computer. The device is a
warning mechanism for an industrial process. When the device signals that the process has
become unstable, the computer is to initiate the shutting down procedures to halt the
process. For the above device, compare the pros and cons of using an interrupt or polling
system.

12. A high speed input device is to connect with a computer. It will transmit data at the rate of
100,000 bits per second and will do this twice per day for a period of about 30 minutes.
You are asked to compare the pros and cons of using either a serial or parallel interface.
The device will be situated some 20 metres from the computer.

351

Further System Fundamentals

13. A high speed disk drive storage device is required to connect with a computer. A
temperature gauge is to be connected to the computer and the data stored on the high
speed drive. The temperature gauge will make readings every lIl00th of a second and
transfer the data to the computer every 5 minutes. Suggest a method of transferring the
data from the computer to the high speed disk drive so as to minimise the impact on the
normal functioning of the computer.

... aa ,I. ..

352

--Chapter contents

Introduction
7.1 File Organisaton

e_------

353

Computer Science

System Life Cycle

INTRODUCTION
Recall that files store data permanently on a secondary storage medium or backing store medium
such as disk or tape. The contents of a file can be organised sequentially or randomly i.e. in any
order. The term 'serial file' is used to denote an unordered sequential file. A hard disk provides
the ability to access data in files either directly or sequentially, whereas magnetic tape only allows
sequential access.

A file stores data related to a particular entity such as a STUDENT. The data for a particular
student is stored as a record of the file, hence a file is a collection of records. Each record is a
collection of the attributes about the particular occurrence of the entity about which data is being
stored. A record has a defined structure and allows data of different data types to be stored about
the single occurrence of the entity. The different data in a record are referred to by their field
names.

A record is thus a collection of data fields related to attributes of the occurrence of the entity
being stored.

For example, a school may wish to collect and store data about the students enrolled at the school.

The file is thus a collection of the entity STUDENT.

The record of the file could collect the following attributes of a student:

ID as an integer.

First Name as a String limited to 20 characters.

Second Name as a String limited to 20 characters.

Year Level as an integer.

Each attribute would be described by a filed name, which in tum has a data type.

In this case the field names could be: ID, firstname, surname, year. The data types for each field
name are shown above: integer, string, string and integer.

An organisation could also collect together files to form a database. Thus we have a simple
hirarchy:

Database, is a collection of related

File(s), is a collection of related

Record(s), is a collection of related fields

Fields have a name and data type and are a collection of bytes.

A record structure is determined by the nature of the data required to be stored.

A record length is the total of the bytes required to store the data for each field.

The size of the file is given by the number of records multiplied by the length of a record.

The record structure of the file defines the characteristics of the occurrence of the entity stored.

1"i4

computer :SCIence

The term 'entity' refers to the noun used to describe the collective term for the file e.g. file of
STUDENTS, file of CARS, file of TREES. The idea of an entity is related to the concept of the
term 'object'. When we add a record to the file we are adding a new occurrence of the entity i.e. a
new student is added to the STUDENT file. The new student is a new occurrence of the entity
student and is represented by filling out the fields of the record with the data that relates to the
new student.

Data in records needs to be written to files for permanent storage and read from files into RAM to
allow the data to be used in processing.

The organisation of the data in the records in the file is important in terms of what data is stored
for each record and the associated data type. It is also important in terms of how the data is stored
and how the data is accessed.

The term 'data storage' here means 'how the data is organised on the storage medium used'. Data
in files can be organised in a variety of ways on storage media. The characteristics of the storage
medium used also impacts on the choice of organisation.

The term 'data access' means the way in which data is accessed on the secondary storage medium
that results in the data being transferred into the random access memory. Data can be accessed in
two main ways. Either you access the data with reference to the position of other data in the file
and must work sequentially through the data to find what you require. Or, because of the
characteristics of hard disks, you can access data directly without reference to the other data in
the file. You will recall that the read and write arm of a hard disk can be directed to a specific track
and sector, thus data can be accessed without the need to sequentially work through other data in
the file. For this reason we can scatter data in a disk file all over the place in a random way and
still be able to access each record by knowing its track and sector number.

In all of the file organisational techniques we will look at, the idea of fixed length fields and
records is implied. Whichever file organisation is used, the bytes of the file are stored in a long
sequence. These sequences can be stored over a number tracks and sectors or clusters on a disk or
as a long byte sequence on tape. The tracks need not be contiguous i.e. next to one another. Also,
a logical record as described by the programmer will usually fit into the cluster size of the disk as
used by the operating system i.e. 512 bytes or some multiple of 512. This is known as the
'physical record' and it is the amount of data that is accessed in one physical read/write operation.
A logical record may take 50 bytes and a cluster may store 10 of these logical records in one
physical record.

Records in a physical record can only be sequentially accessed once the cluster has been
accessed. The physical record is read into memory and then the record located by a sequential
search.

If the fields are fixed in length and the number of fields per record is fixed, it is easy to count the
bytes that belong to each record. This can be done sequentially by, for example, starting at the
beginning and counting off the number of bytes for each record.

EXERCISE 7.1
1. Define the term 'file'.

2. Define the term 'record'.

3. Define the term 'field within a record'.

4. Why do fields have a datatype?

355

DEFINITION OF THE TERM KEY FIELD

System Life Cycle

5. Construct a record structure for the following file and state the data type for each field. A
teacher wishes to record details about the address, phone number, contacts and email
address of each student in one of their classes.

6. Assume an integer takes 4 bytes, a real 8 bytes and a char I byte, size the following record
structure and if there are 1,000,000 records, size the file.

Fields are A(integer) + B(char) + C(real) + D(string of 10 char)
Record Length =length of all fields in record
File Size = Record Length X Number of Records

7. Define the term 'database'.

~6~~7.1 FILE ORGANISATON
© IB07112004 ••

A 'key field' is used to identify a record.

A primary key is used to uniquely identify a record e.g. a student ID number is a primary key. A
unique key can also be created by combining two or more fields to uniquely identify the record.
For example, employee surname + date of birth + phone number fields can be combined to form a
unique key.

Secondary keys can be used to classify records, e.g. sex type could be a secondary key.

~6~~ 7.1.2-3 SEQUENTIAL FILE ORGANISATION
The organisation of a sequential file is the same as that of a serial file except that the records are
stored sequentially in a specific order, for example, in the numeric order of ID or alphabetically
according a surname field.

A standard sequential file algorithm has the following format:

Open file for reading
Found = false
While (not end of file and not found) Do

Read record
Set fields to data variables: datal=fieldl, data2=field2 etc
If record matches required record then found = true

If (found) then perform desired processing on data variables
Close file

Sequential and serial files were originally designed to operate on magnetic tapes. For example, if

you have read to the lOth record and wish to access a previous record you must start reading from
the beginning of the file.

Sequential files cannot be updated directly. They must be read into the primary memory (RAM)
and sorted by using arrays and then written back out to the disk or tape.

356

Computer Science

EXERCISE 7.2
1. What is the difference between serial and sequentially organised file structures?

2. What is the difference between the organisation of a file and the method used to access
records in the file?

3. Write an algorithm to append a new record to a sequential file. Assume that a command
Append(filename) record exists that writes to the end of the file.

4. Assume a file record structure stores a person's ID, a their surname and their age. Write an
algorithm to read and display each record where the age is over a fixed value.

5. Using the file structure from above, write an algorithm to edit a specific record in the file.
Assume that the person's ID is used to access the record.

6. In order to convert a serial file into a sequential file, what would need to be done?

7. Write an algorithm to read a serial file of 1000 records and then write a new sequential file.
Assume that the records in the file are single and unique integer values i.e. the record
contains one field that is of integer type...................

© IB0 7142004 •• PARTIALLY-INDEXED SEQUENTIAL FILE
ORGANISATION

An 'index' to a file operates the same way that an index works in the front or back of a book.

In a book chapters begin on designated page numbers. You could find them by looking through
the book page by page in a sequential way. Thus operating the book as if it were a sequential file.
Alternatively you could use the index that provides the chapter headings and the corresponding
page numbers. Unfortunately you would still need to resort to some sequential searching. Firstly,
to look up the index page and then to actually find the page, but at least you would have some idea
where to begin looking.

Many web sites use an index approach. Consider a set of web pages for a glossary. The first page
could be an index, with a link for each ofletters A, B, C etc., that would point to the top of the
corresponding page. On the page pointed to by A would be an alphabetic list of all the words
starting with the letter A. Such a setup is operating a 'partial index'.

The initial look up of the main index is via sequential look up. The access to the desired page is
via a direct link and then a sequential search is made of the linked page to find the desired term
(record) in the page.

The diagram below shows how such a system could operate in a computer system. An important
point to note is that the index itself is a file.

The basic idea is to have an index that points to the first record in a group of records. This index is
sequentially searched and then the group that contains the desired record is accessed directly. The
group is then sequentially searched to locate the required record. Thus the file is split or organised
into separate groups. The groupings are usually based on some logic such as alphabetic order.

357

System Life Cycle

Figure: 7.1

1st Block

2nd Block

Record
Key Record Address

1.

A 1)

B 6 2.

C 11 3.

D 16
4.

ssume that the file stores with a primary key by
ich it is listed alphabetically in the index. Thus 5.

cords 1 to 5 have keys that start with A. The partial
6.

dex thus points to record 1 and the next index starts 7.

record 6. 8.

9.

10.
11.

12

A
wh
re
in
at

The basic algorithm for a partially indexed file is shown below.

Open index
Open file
Get searchKey
Found = false
Locate access address in index using searchkey
Direct access record group
While not at end of group dnd not found Do

Get record
if match then

found = true
return record

if found then process reco~d as required
close file and index

In summary:

• The index and records in each group are ordered.

• The index is searched sequentially.

• The first record of each group is accessed directly.

• The other records in each group are searched sequentially.

~~~7.1.5 FULLY INDEXED FILE
A fully indexed file has an address for each record in the file associated with each separate index.
The index is firstly searched sequentially to find the address. This address is then used to access
the desired record in the file using direct access. Importantly, the records on the disk to not need
to be in a specified order as the index provides the appropriate access.

358



Computer Science

The diagram below shows how this operates.

Figure: 7.2

Key Record Number
a 4

b 7
c 5
d 3
e 12
m 9
n 10
p 2
s 11
t 6
z 1

Record Number Key Data fields
1 4

2 7
3 5
4 3
5 12
6 9
7 10
8 2
9 11
10 6
11 1

Assume that the key is a single letter so
that there are 26 possible records. The
index allows access in sorted order, one
entry per record. Records on file are in
serial order.

Files can be indexed in a variety of ways and thus multiple indexes are common.

The advantage is that the file can be accessed directly but can also be accessed in sequential order
by reading down the index file and using the address of each index to access the file in the desired
order.

In all cases there is always an overhead associated with indexed files. The index file itself takes up
disk space, and thus memory, when it is used. Also, to maintain the index in sorted order requires
constant re-ordering and hence takes processing time.

EXERCISE 7.3
1. Define what is meant by the term 'partially indexed file' and explain how records are

accessed using this method.

2. Define what is meant by the term 'fully indexed file' and explain how records are accessed
using this method.

3. What are the advantages and disadvantages of using either a partially or fully indexed file
structure?

4. In a customer management system, assume that a sequential file was ordered on the
customers' surnames. Use diagrams to explain how the records could be accessed firstly
by a fully indexed method and then by a paltially indexed method.

• • • • • • • I~ •• &, • &, &,

359



System Life Cycle

©IB07.1.6 DIRECT FILE ORGANISATION
2004

As mentioned above, all files are simply a sequence of bytes stored one after the other using fixed
length fields and records. To implement sequential access is very simple. You open the file and
then read the data back. The important point to note is that different data types are stored
differently. A string is a sequence of 8 bit characters, an integer is usually 4 bytes or 32 bits and a
real can be up to 64 bits or 8 bytes. Thus to read data back it must be read back in the same order
in which it was written and the fields assigned to appropriately typed data variables.

If you were able to keep track of the number of records written, you would be able to point to the

start of the nth record in the byte sequence by using the offset formula:

Start of record offset byte = number of records X length of record

As usual, the first record is the oth. Thus, if we had a record size of 50 bytes, the 10th record

would start at an offset position calculated as 50 X 10 =500th byte position and go for 50 bytes.

Thus to get access to record in the 50th position we need to provide the computer this offset
position. The implementation of this is different from one programming language to another and
between operating systems.

The organisation of the records can be in any order. To access the desired record, we need to
know its position in the byte sequence that makes up the file. To facilitate this type of access we
need the operating system to cooperate. Fortunately the designers of computer systems know this.
The operating system keeps track of the files in its system by use of a file management system.
The file management system keeps track of the start of files on the disk. If the program can
provide the name of the file and the byte offset position, the file management system can use this
information to locate the required start point on the disk by positioning the read head over the
required track and sector.

The reading and data transfer then takes place and this is the same for either form of access. In
fact the physical record is read. The data is then assigned to the various variables specified in the
reading part of the program. At this point it is important that the data types match.

The key question is: how does a user remember the position of the data in the file? One way is to
use some form of 'key hashing'. The user simply enters the desired key sequence, e.g. surname or
product code, and the computer program converts this into a record number that is then used to
provide direct access.

Identification numbers are commonly used because they provide a unique number. An ID is
usually allocated when a new record is added to a file. Thus, if the program keeps track of the
number of records already used, the next ID generated can be linked in some way to the ID. For
example an ID could be generated that used the year and record number and check digit. An
example is shown below:

NextAvailiable record location 100
Year = 2000
Check digit = 2000 mod 100 = 0

Thus the new ID is 20001000. This ID would the be recorded for future use.

When this ID is entered, the check digit is calculated and then string functions are used to extract
the desired record off-set position.



Computer Science

Standard File Direct Access Algorithm

The following algorithm demonstrates the basic logic of accessing a direct access file. It assumes
that record I is specified by recordNumber = O.

Start
set lengthOfRecord length of record in bytes
open file
get recordNumber
moveto byte position recordNumber*lengthOfRecord
read record
edit record
write record
close file

End

EXERCISE 7.4

1. Explain what is meant by the term 'direct access file organisation'.

2. Why can this method of access not be efficiently done using magnetic tape as the
secondary storage medium?

3. Why can direct access be achieved using magnetic or optical disk as the secondary storage
medium?

4. Explain the operation of the Java seek method in randomAccessFile class.

5. Using your chosen programming language, look up the equivalent command to 'moveto'.

6. When using direct access, explain why it is not necessary to re-write the entire file when a
single record is updated?

7. When accessing a direct access file why do we use the PHYSICAL RECORD position of
the record in the file?

8. Implement in your chosen language a simple direct access system for the following
problem. Assume a record contains a person's surname and age. Your program needs to be
able to access a specified record position, read the record, edit the age field and then write
the new record.

9. Records in a direct access file are normally not ordered as in a sequential file. If a direct
access file contains 100 records, the records can be accessed sequentially by, for example,
using the 'moveto' command to move incrementally through the file. Suggest two ways to
overcome the problem of how to get access to the data records in some form of order.

10. A bank wishes to allow customers access to their bank accounts via an automatic teller
machine. Justify your choice of file organisation and access method.

11. A satellite beams back temperature readings at the rate of 2 readings per hour. Justify your
choice of file organisation and access method.

361



System Life Cycle

©IB07.1.7 FIXED AND VARIABLE LENGTH RECORDS
2004

The length of a record is determined by calculating the TOTAL number of bytes in the record.

A record is made up of fields and each field has a data type, which in tum is fixed in length for
primitive types such as int of double. In Java an int field takes up 32 bits or 4 bytes.

However, data types such String are reference types or Objects. Unless you ensure that they are
fixed in length the length can vary. Example: a String surname field can obviously have varying
lengths as the length of surname varies.

Consider a record defined by the following class:

class Record

int age;
String name;
double weigth;

The length of a general record = 32 bits + variable number of Bits + 64 bits.

The specific record 23, Smith, 78.9 has length 32 + 40 + 64 = 136 bits.

(note Smith =lbyte + 1byte + lbyte + lbyte + lbyte i.e. 1 byte (8 bits) per character, which gives
5 bytes =5 bytes * 8 bits per byte =40 bits)

The specific record 4, Ng, 10.3 has length 32 + 16 + 64 =112 bits.

Whilst the general record structure is the same the length of the record is different depending on
the number bits in the name field.

A sequential file can easily have variable length records. Each field is written and read separately
or the entire record concatenated and read and written in one operation.

The sample Java program below would happily read a test.dat file of the following structure:

23, Smi th, 78. 9
4, Ng, 10.3

import java.io.*;
public class seqDemol
{

public static void main (String args[] )
{

new public seqDemol();
}

public seqDemol()
{

try
{

BufferedReader inFile=new BufferedReader(new FileReader("test.dat"));

if (inFile.ready()) output("file ready for reading");
PrintWriter outFile=new PrintWriter(new FileWriter("copyTest.data"));

362



THE USE OF HASHING TO FACILITATE FILE ACCESS

Computer Science

if (!outFile.checkError())output("file ready for writing");

String inRecord = null;

while (inFile.ready())
{

inRecord = inFile.readLine();
output(inRecord);

input.close();
output.close();

}

catch(Exception e)
{

output ("Something wrong");

Each record is variable in length but the record is read and output to the screen.

If we were to implement a direct access system, we need to use fixed length records. The reason is
that the start byte position of the desired record is calculated by multiplying the record length by
the relative record position.

Hence, to access record 4 we say seek(fixedRecordLength*record-l). We subtract 1 from the
record number because we start counting at O!

If the records could be variable in length the seek operation would fail.

The general way if ensuring records are of fixed length is to force each String field to take up a
fixed number of bytes. Extra spaces are added to the front of the field to pad out the length if
needed.

Another way is to use a fixed byte length into which the fields are written and, provided the
record does not overflow this fixed length, the seek operation will work. The problem with this
method is that it potentially wastes space on the disk.

© IB0 7182004 ••

The notion of 'hashing' has already been covered. One of its uses is to create record position
numbers that can be used to gain direct access to data. In the product code example in 5.2.3 the
data can be stored as records in a direct access file. The example shows a hash table that is an
array. Arrays are volatile structures and thus, for the data to be available the next time the program
runs, it will need to be retrieved from a disk file and loaded into the array. Alternatively the
records could be accessed from the file using direct access as required. If the data was to be
constantly accessed, the array option is likely to give the best performance as the overhead of
loading and using the array would be offset by faster memory access as opposed to slower disk
access. If the data was used infrequently, then the disk file would be quiet suitable.

Records in direct access files do not need to be in any order. To use a hashing approach, the data
records are spread out randomly over the remainder space using the remainder as the record
position. In the products example the file would have 51 available record spaces of which only a

363



System Life Cycle

few would actually be used.

To access the records using a hashing algorithm the following steps are undertaken.

Open file
Get key
Create hash key
Use the key as the direct access address
Read the record in the position specified by the
hash key

Close file

To write records to the file we would follow these steps:

Open file
Calculate the hash key address
Write record to the position designated by the hashed
key
Close file

EXERCISE 7.5
1. Create a hash file structure for the students in your class. Use the surname and the person's

initials to calculate the hash total by summing the ASCII values of the letters and keeping
the remainder from the result of dividing the letter total by the number of students in the
class.

Draw a diagram and record any clashes.

Explain in broad algorithm terms how you might overcome the clash problems.

Experiment with different divisors to see if this reduces the clashes e.g. double the size of
the file, then triple the size of the file etc.

2. When using hashing it is likely that a number of record positions are left unused. Why
might this cause a problem when using very large files?

3. Does hashing allow records to be stored in order? Explain your answer.

4. Why might hashing be used in preference to using an index?

5. What advantage does indexing have over hashing?

6. Convert the example in the previous section to determine the record number by using a
hashing algorithm on the surname.

© IB0 719
2004 •

••••••••••••••
COMPARISON OF THE SPEED OF ACCESS AND
STORAGE REQUIREMENTS FOR THE VARIOUS FILE
TYPES

Storage requirements

Sequential and direct access files require the same physical number of bytes to store the file.



Computer Science

Indexed files require extra storage space because of the need to store the index.

In a large system this could be quite an overhead and typical indexes need to be stored in memory
while in use. For example, if a fully indexed file had 1,000,000 records and a key of 10 bytes, the
index file would be 10,000,000 bytes. Thus the storage space required for the index is a function
of the number of index entries and the length of each entry.

Speed of access depends on:

• access to a hard disk.

• access to an index in memory.

• access to a tape and other media.

Speed comparision

Sequential access is O(n), with a worst case of n file reads. All the access involves disk reads and
thus is slow.

Index access is also O(n) but the access is usually done on an index stored in an appropriate data
structure such as an array in memory. When the file access is complete, only one disk read is
necessary, unless a partial index approach is used. In this case the sequential search of the data
records is a function of the number of records in each group.

Record access is also affected by the number of logical records stored in a physical record. The
number of logical records stored in a single cluster is sometimes referred to as the record
blocking factor (not to be confused with the number of sectors blocked into a single cluster). The
more records that are blocked into a disk sector, the faster access will be because only one
physical disk read is needed to retrieve a record.

~6~27.1.10 LOGICAL AND PHYSICAL ORGANIZATION OF DATA
The physical structure of data stored in RAM is that of a sequence of data items stored in linear
order. The data items are stored as set of binary bits.

The physical structure of data stored on an secondary storage device such as a disk is simply a
sequence of binary bits encoded in some way.

The logical structure is the abstract way that the computer program is able to access the data. The
logical structure is under the control of the program designer.

In RAM, logical structures can be represented using a range of data structures:

Array data structures have the logical structure of a list. Logically the list can be accessed using a
linear search where individual elements are accessed in the physical order they are stored in
RAM.

Array structures can also be accessed using a binary search, which is logically very different to
the physical structure.

Linked lists allow a logical structure that is similar to the physical list structure of the data.

Binary tree structures are logically very different structures to the physical structure of the data as
a list. Arrays can also be used to create a logical binary tree.

365



System Life Cycle

On disk, the physical file structure resembles a list or sequence of bits. The data can be access
using an index to access the data in logical alphabetic order.

In summary, the physical structure is simply that of a sequence or collection of bits. The logical
structure is imposed on this by the data structures and index methods used by the programmer.

~6~~ 7.1.11 EXTERNAL SORTS
Data stored in sequential files needs to be in a particular order. As records are added, they need to
be placed in the correct order. This requires the file to be sorted.

To sort a file we normally read the data into an appropriate set of arrays i.e. one for each field in
the record and the arrays are then sorted using the appropriate key. When the sort is complete, the
corresponding array's elements, which comprise the record of the file, are written out to a new
sequential file.

Today's computers have very large amounts of RAM or primary memory. It is not uncommon for
PCs to have in excess of 64mb. However, disks are also very large and files can easily exceed the
available primary memory.

To sort sequential files of this nature, a 'merge sort' is required. An example is covered below.

~6~~7.1.12 EXAMPLES OF DIRECT ACCESS FILE HANDLING
An example of a simple sequential file system is shown above.

Example 1: General three field record file.

This worked example uses a simple record structure of three fields as shown below:

pKey acts as the primary key and is equal to the relative record position of the record on disk.

name holds a String data value e.g. name of a person.

fieldl is an int field.

The record is defined in the Record class and is simplified to not use accessor and edit methods.

In this example the recordLength variable is set to 40 bytes. The record is made up an
int+String+int and, provided it does not exceed 40bytes, the direct access reading and writing
operate. In a following exercise the reader is asked to improve on this fixed record length design.

Comments have been placed in the code to guide the reader. It is hoped that the code is
understandable without a long additional explanation.

import java.io.*;
public class directDemol
{

RandomAccessFile rf; //direct access object
int recordLength=40; //fixed length of record
int recordPosition=O; //relative record address
final int MAX=200; //maximum number of records in file
Record current = new Record(); //current record

public static void main (String args [] )
{

new directDemol();

366



Computer Science

class Record

int pKey;
String name;
int fieldl;

public directDemol()
{

//attempt to operate on file using try/catch/exception handler

try
{

//create the direct access file object for reading and writing

rf = new RandomAccessFile("randomFilel", "rw");
//check that the file maybe empty
if (rf.length()==O)
{

System.out.println("File empty");
initFile(); //initialize file if empty

}

//make pKey = recodPosition just for the example
writeRecord(10,"Smith",23, 10); //write record to file
current = readRecord (10); / /read record to current from file

displayRecord(current); //show current record to screen
rf.close(); //close file

}

catch (Exception e)
{

System.out.println("File error");

}

void initFile ()
// set all records to have the record structure -999+"empty+-999
{

try
{

for (int i=O; i<MAX; i++)

rf.seek(i*recordLength);
rf.writelnt(-999);
rf.writeUTF("empty");
rf.writelnt(-999);

}

catch (Exception e)
{ }

367



System Life Cycle

void writeRecord(int pk, String n, int f, int r)

try
{

rf.seek(r*recordLength); //seek the position
rf.writelnt(pk); //write the primary key
rf.writeUTF(n); //write the String
rf.writelnt(f); //write the int

}

catch (Exception e)
{ }

Record readRecord(int r)

Record rec = new Record(); //create new record
try
{

rf.seek(r*recordLength); //seek record
rec. pKey = rf. readlnt (); / /read int as first field assign to pKey

rec.name = rf.readUTF(); //read String
rec.fieldl = rf.readlnt(); //read int

}

catch (Exception e)
{ }

return rec;//return the record

void displayRecord(Record c)

String rec = c. pKey+c. name+c. fieldl; Ilmake up output String

System.out.println(rec);

EXERCISE 7.6
1. Compile and run the program to check that it works. The output should look like this:

lOSmith23

2. The record is set to 40 bytes, but name can vary in length and no check is done to see that
it is not more than 40 bytes etc.

How many bytes is an int in Java?
How many bytes does a String take in Java in a direct access file.
Assuming a fixed length record of 40 bytes, how long can name be?

3. Modify the writing of the String name to be always a fixed length as per your calculation
above, i.e. you will need to add extra spaces.

368



Computer Science

4. Modify the Record class to include suitable accessor and edit methods and a toString
method to return the contents of the record.

5. Add some suitable data validation. For example, add a range check on the pKey value or
check that the name is always less than a suitable length.

Example 2: Simple application of a hashing function

This example uses the same record structure as above and includes a more complex Record class,
which also shows how to address question 4 above.

The major difference is the way that the relative record position is calculated. This is done using a
hash function.

The writeRecord method accepts the current record and the relative record position. The relative
record position is calculated by a call to the hash function/method hashCode. The method
hashCode accepts the concatenated String formed from the pKey and the name and the maximum
number of records allowed i.e. 200 in this example. The function returns the relative record
position and this is assigned to the variable hashReclD as shown in the line of code below.

int hashRecID = hashCode(current.pKey+current.name, MAX);

The value of hashReclD is then used to write and read the record.

The hash function operates by simply converting the input String pKey+name into a ASCII
hashTotal and then using this value to determine the hash value by evaluating
hashTotal%hashSpace, where hashSpace is 200. This value is returned by the hash function and is
used as the relative record number.

The only aspects that are commented relate to the operation of the hashing operation.

import java.io.*;

class Record

int pKey;
String name;
int fieldl;

public Record(int pIn, String nameln, int fieldlln)
{

pKey = pIn;
name = nameln;
fieldl = fieldlln;

String toStringRecord()
{

return pKey+name+fieldl;

int getpKey ()

369



System Life Cycle

return pKey;

String getName ()
{

return name;

int getFieldl ()

return fieldl;

void editpKey(int newPkey)

pKey = newPkey;

void editName(String newName)

name = newName;

void editFeildl(int newFieldl)

fieldl = newFieldl;

} ;

public class public directDemo3
{

RandomAccessFile rf;
Record current;
int recordLength=200; //arbitary length
int recordPosition=O;
final int MAX=200;

public static void main (String args [] )
{

new public directDemo3();
}

public directDemo3()
{

try
{

rf = new RandomAccessFile(" randomFilel", "rw");
if (rLlength()==O) System.out.println("File empty");
initFile () ;

//make pKey recodPosition just for the example

370



Computer Science

current = new Record(lO,"Smith",23);
//determine the record position-relative record number
int hashRecID=hashCode(current.pKey+current.name, MAX);
writeRecord(current,hashRecID);

//write record using record position
current = readRecord(hashRecID);

//read record using record position
displayRecord(current);
rf.close() ;

}

catch (Exception e)
{

System.out.println("File error");

void ini tFile ()

try
{

for (int i=O; i<MAX; i++)

rf.seek(i*recordLength);
rf.writeInt(-999);
rf.writeUTF("empty");
rf.writeInt(-999);

}

catch (Exception e)
{ }

void writeRecord(Record c, int rec)

try
{

rf.seek(rec*recordLength);
rf.writeInt(c.pKey) ;
rf.writeUTF(c.name);
rf.writeInt(c.fieldl);

}

catch (Exception e)
{ }

Record readRecord(int r)

Record c = null;
try
{

rf.seek(r*recordLength);

371



System Life Cycle

c = new
Record(rf.readlnt(),rf.readUTF(),rf.readlnt()) ;

catch (Exception e)
{ }

return c;

void displayRecord(Record c)

System.out.println(c.toStringRecord());

int hashCode(String code, int hashSpace)

int hashTotal=O; Ilinitialize hash total to zero
char ch; Iisingle character holder variable
for (int i=O; i<code.length(); i++)
{

ch = code.charAt(i); //get the single char at the position
hashTotal = hashTotal + ch; II add to accumulating total

return hashTotal%hashSpace; //determine hash value and return

EXERCISE 7.7

1. Compile and test the program.

2. How might you cater for clashes? Add a way to check for collisions and then resolve the
collision by searching from the start of the file until a blank record is found and finally
write the desired record in that position.

3. Add a suitable interface to enable the following functions to be performed:

a. Add new record.
b. Access existing record.
c. Edit an existing record.
d. Delete an existing record.

4. Using your knowledge of linked lists or binary trees, implement a fully indexed direct
access system using the name. Consider allocating the pKeys and relative record positions
on an independent random basis.

372



•Chapter contents

The Case Study

•

373

Computer Science



The Case Study

8 THE CASE STUDY
To allow teachers to examine real world applications in depth, the IE introduced the Case Study
which is a description of an existing computer system. This case study is typically distributed to
schools about 6-9 months before the final examination but is also available earlier via the IE
online curriculum website at http://online.ibo.org - follow the 'curriculum resources' link).

From 2004, first examinations in 2006, the IE plan to use each case study over a two-year period
(four examination sessions) instead of the present 1 year cycle.

This section draws on material presented in chapters I and 3 and, in many cases, further develops
the themes presented. Our approach here will be to use the previously presented case study
material to illustrate the types of issues that can be presented to students. The case studies
released to schools at the time of writing are:

• Sample:

• 2000:

• 2001

• 2002

• 2003

• 2004

Medical Applications of Computers

The Use of Computers at a Large Bank

The Use of Computers in Weather Forecasting

Computer Technology and Human Evolution Research

Convenience and Protection versus the Fear of Big Brother

Computer Aided Engineering

PARTS OF A SYSTEM
The main parts of any computer system follow the input-process-output model of data flow:

Figure: 8.1

___I_n_p_u_t ----------i.~I'____p_r_o_c_e_ss______'I----~·I'____O_u_tP_u_t _

In hardware terms, it is only necessary to add some backing storage since the CPU has only RAM
(temporary storage) and ROM (read only storage) in its primary memory:

Input devices Output devices

The user would find it difficult to deal directly with the hardware since all operations at this level
are carried out in binary machine code. Therefore, successive layers of software have developed
- operating systems (including the user interface) and applications software:

374



LUII1PUlCl C)l;lClll;C

Figure: 8.2

DATA IN A COMPUTER SYSTEM
One of the important processes identified in software development (see chapter 1) was analysis
and fact-finding. This involves carefully identifying the data which needs to be held and
processed by a system.

In a bicycle rental system, data can be collected via a manual system, using record cards, for
example:

Bicycle number: IP201 Purchase date: 18/07/00

Make: Elektra Value: $185.00

Model: 18-speed de-luxe Hourly charge: $4.25

Date and Renter's ID Date and Renter's ID Date and Renter's ID
time time time

-

--

In order to fully describe the system it is necessary to consider what happens under many
different circumstances, what happens when a bicycle is returned among others. In order for the
total charge to be computed, the hours of renting need to be calculated and multiplied by the
hourly charge.

Often, the data that needs to be held and processed in a system is identified using data flow
diagrams. A data flow diagram typically uses the following symbols (although they are not
complete consistency in practice):

375



The Case Study

Figure: 8.3

The box with rounded comers (maybe square or rectangular)
which represents a process. An example would be the calculation
required above.

The box with an open right-hand side representing a data store.
This would be the index card for the bicycle.

The closed rectangle is a source or sink (destination) of data. It
shows the limits of our diagram. How the data gets into or out of
these boxes is not a concern of this diagram.

These boxes are accompanied by arrows to show the direction of data flow. Often the arrows
have other associated information such as the data that is on the move or, in other systems, the
person responsible for the process.

For a complete picture consider returning the rented bicycle using the documents and data in the
manual system:

Figure: 8.4

Bicycle returned

Renter pays

Bicycle details
card

Update bicycle
details card

No reference is made to hardware used. For example the calculation may be done with a
calculator (or abacus or on the back of an envelope etc.), this does not concern the data flow.
However, when a new system is to be created, it is important to know that this process needs to be
carried out.

EXERCISE 8.1
1. Construct a data flow diagram showing what happens when a bicycle is rented out.

2. List all the other situations where updating of data may take place in this system.

Even a small system will require several diagrams to describe it completely.

3. Study your existing student registration system. Draw a series of data flow diagrams that
illustrate where data is stored, how it is used and when it is updated.

4. Examine the Weather Case Study. Construct a dataflow diagram showing how a person at
a TV station would prepare a weather forecast for presentation.

••••••••••••••
376



Computer Science

DATA CAPTURE AND PRESENTATION
The data flow diagram shows only data flow without reference to mechanisms of capture and
display. There are a great many ways to capture data for use in a computer system. The main
devices are described in chapter 2 and their methods can be classified in the following way:

Input method Example devices Example of use

Manual data entry. Keyboard, mouse, joystick, Adding client or book records
I touch screen, touch pad. in a library.I
I
I

Direct data entry. OCR/OMR scanners, MICR Lending a book, locating
I reader, barcode scanner. borrower details.

-

Automatic data Sensors - temperature, sound, Controlling the temperature in

!
entry. pressure, light etc. the library.

Similarly one can classify output devices in common use:

Output method Example devices Example of use

Temporary display. VDU, LCD display, lights. Showing the price of an item at
a POS terminal.

-

Permanent display. printers, plotters. Printing a receipt at a POS
terminal.

Electrical! Actuators - relays, switches, Sending credit card details to a
mechanical output. converters etc. I bank from a POS terminal.

--

There are so many input or output devices that not all of them will fall into a particular
classification.

EXERCISE 8.2
Study the Human Evolution Research Case Study (lEO 2002).

1. Identify and describe all of the input and output devices in the case study.

2. Explain why each of these devices is appropriate to a given task.

aa .

377



The Case Study

DATA PROTECTION, ERROR DETECTION AND RECOVERY
METHODS
Data protection

Data that is in systems needs to be protected against accidental or deliberate loss or damage.
Some examples of threats to data are:

• Unauthorised users (hackers) may gain access and alter or remove data.

• Physical media (discs, tapes) may be stolen.

• The hardware may be stolen (along with fixed backing store).

There may be fire or flood damage.

A particular danger of data on networks is that data may be copied leaving no evidence that a
copy was made as data may be accessed over networks remotely.

An important method of protecting data from unauthorised access is the use of passwords and
privileges, particularly on networked systems. Only people who have been given a logon name
and allowed to select their password can access a system or parts of a system. Privileges can be
assigned to users; low-level users can access data but not change it or make a copy to a local
floppy disc, for example. In a supermarket you may see this happen if a price has been incorrectly
recorded in the computer database. The check-out person usually does not have the right to
change prices and will therefore call a supervisor who will tap in an access code and correct the
situation.

To be effective, passwords must be of a reasonable length (usually 6 characters or more) and hard
to guess (not your partner'slchild's/dog's/parakeet's name) and containing special symbols
besides alphabetic characters.

If, while you're at the supermarket, you look around carefully you may see examples of physical
security -locking computer systems in special rooms accessible only by personnel equipped with
key cards or special codes.

When data is transmitted over networks it may be encrypted if especially sensitive such as large
financial transfers, police data on suspects, government military secrets so that it is very difficult
(not impossible) to decode. Encrypting data helps to ensure that, even if data is accessed, it is not
readable. A PIN number on the magnetic strip of a bank card is encrypted for this reason.

Error detection

Methods used to detect and correct errors are discussed in section 3.6.

Data recovery

To protect data against irreversible damage, backup copies are kept in a safe place; in most cases
they will be kept in a different building. These can be used to restore a system to the state existing
at the last backup. When did you last backup your data? Most businesses cannot function without
the data from their computer systems; therefore they must have a thorough and thoroughly tested
backup strategy.

Important real-time systems such as air-traffic control systems may use mirrored systems where
two computers run the processing simultaneously - if one breaks down the other can continue
operation.

378



Computer Science

EXERCISE 8.3
In the Human Evolution Research Case Study:

1. Identify methods which have been used to ensure security of data.

In the Weather Case Study:

2. Explain why the data from the data collection sites is coded before being forwarded to the
National Weather Service.

For each of the above case studies:

3. Explain the possible consequences of data corruption .

••••••••••••••
DESIGN OF APPROPRIATE DATA STRUCTURES
This topic has been covered in section 1.5.3 where the relevant data structures were described
together with examples of when it would be appropriate to use them.

EXERCISE 8.4 (REVISION)

1. A holiday park offers sites for tents and caravans some of which are supplied with power.
To book a space the following system is used:

0000000000.. . .. .
powered tent sites powered caravan sites

entrance

When a customer arrives the following details are collected and entered onto a form:

• Name.

Address.

• Vehicle Registration Number.

• Site Allocated.

Information is held about each site in a card index file:

• Site number.

379



The Case Study

• Powered/not powered.

• Type (tent or caravan).

• Daily charge.

Carefully consider the data flow in the following scenarios:

• A new customer arrives.

• A customer leaves.

A site has its status changed (e.g. from powered to non-powered).

Draw data flow diagrams to illustrate the above scenarios.

Discuss, including diagrams, the data structures that could be used to hold the data for the system.
Remember that the 'discussion' keyword requires you to consider a range of possible data
structures and give reasons for selecting the ones you did.

HARDWARE COMPONENTS
You have already studied a range of input, output and backing store devices in Chapter 3. For
each one given there, copy and complete the following table related to the holiday park scenario
of the last section. An example is given for you:

----

Device
Could be

Example of use Advantages Disadvantages
used?

To enter details of
Easy to enter Slower than direct

Keyboard. Yes. alphanumeric data entry methods such
customers.

such as an address. as a barcode.

USER INTERFACES
Early operating systems operated with typed in commands (requiring command-line interpreters
or CLI's) while later ones have developed graphical user interfaces (GUI's). The main features of
these interfaces are:

Command Line Interfaces

Easier to implement for a programmer.
Require less memory to run. Can be run on
systems without graphical monitors.

Users need to remember specific
commands so new users can find them
harder to use.

Long term users may find it quicker to type
in a command at the keyboard than to use a
mouse or other pointing device.

Graphical User Interfaces

More complex to implement. Require more
memory, a pointing device and a graphical
monitor.

Icons (small images) help users to
remember commands, file types etc.
Commands are grouped in menus.

New users will find it easier to use because
they do not have to remember specific
commands.

380



Computer Science

Graphical User Interfaces are sometimes described using the term WIMP, variously interpreted
as;

• Windows

• Icons

• Menus

• Pointers

• Windows

• Icons

• Mice

• Pull-down Menus

EXERCISE 8.5
Using the Human Evolution Research Case Study:

1. A researcher is preparing images to be posted on a web page while a computer technician
is setting up a filtering task. Explain the advantages and limitations of both GUI' and CLls
for each of these tasks .

.......................
SYSTEMS FLOWCHARTS
Systems flowcharts are designed to link data flow and processing operations to specific pieces of
hardware. They are sometime known as input-output (systems) flowcharts. They should not be
confused with flowcharts used to show the structure of algorithms.

As with data flow diagrams there is a wide variation in symbols used to implement systems
flowcharts; below are the ones specified by the lEO in the Computer Science Subject Guide:

Figure: 8.5

Devices and media Other symbols

= Action or process ~-- Annotation

+/ / Input or output
Lines crossing

(word inside)

-r-( ( On line storage Lines joining

381



The Case Study

Q
LJ
D

Tape storage

Disc storage

Document

7

Data flow

Communication
(2 ways unless

indicated)

Students generally seem to have great difficulty with systems flow charts; the main problem
seems to be that they think in terms of linear algorithm flow charts (I believe there is a conspiracy
of subversive maths teachers at work here). The following diagram shows the outline shape of the
four different types of chart used in this book:

Flowchart

Figure: 8.6

Systems flowchart

Data flow diagram Module diagram (Structure chart)

382



Computer Science

Points to note:

• Flowcharts are used to describe algorithms (although pseudocode is often preferred these
days).

• Systems flowcharts are used to describe input-process-output in computer systems, they are
the only charts to refer to hardware devices.

• Data flow diagrams refer to data objects and processes (people, paper files, computer files,
etc.).

• Module diagrams are used to split a large problem up into several smaller ones (stepwise
refinement). This makes the problem easier to solve and divide up among a programming
team.

Simple processes

Consider the case of the holiday park described earlier. If this system were to be transferred to the
computer, the following tasks (among others) would have to be carried out:

Registering a new customer could involve entering the new customer details at the keyboard,
entering the site location and storing these to a database:

Figure: 8.7 A, B & C

Allocate site, store
record to disc 1----------.1

More detail can be added, if required, as an annotation:

[

Name

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1:t:d~sRegistration
Number
Site Allocated

The process of checking out a customer would involve calculating the bill and issuing a receipt:

Recover record
calculate bill

In chapter 3 you will have studied batch, online and real-time systems; here we examine how
these types of process are represented in systems flowcharts.

383



The Case Study

Common batch processing tasks

In batch processing, data is gathered first and then processed in one go. Typical operations update
a master file using a sorted transaction file. Therefore, in many batch processes (cheque clearing,
electricity billing, payroll processing, batch update of a stock file, etc.), paper documents will be
collected, validated (section 3.6) and sorted. Items rejected by validation may be corrected and
re-entered:

Example for electricity billing:

Figure: 8.8

Failed validation,
check and re-enter

data

Validate readings
and write to

transaction file

Sort

Validated
transaction file

Sorted and validated
transaction file

The sorted transaction file is then used calculate the amount of electricity used (by subtracting the
reading in the master file from the reading on the transaction file) then to produce a bill and to
update the master file with the new reading. Of course some errors may still occur. If the meter
reading is incorrect, bills can be very large or perhaps negative. These errors are typically
recorded on a hard copy print out.

Figure: 8.9

Sorted and
validated

transaction file

New master file

Update master file and
produce bills

384

Master file

Error report



Computer Science

Activity

You will have studied cheque processing and payroll processing systems in Chapter 3. Construct
a systems flowchart for each of these systems.

Common online processing tasks

Recall that, in online processing, any transactions are used to update a database immediately. A
typical example is supermarket stock control where barcode scanners at a pas terminal read the
barcode, look up the item details in a stock database, return the details to the pas terminal where
they are printed on a receipt and shown on a display.

Figure: 8.10

Activity

Item code not
found retry

Look up item
details using

barcode as key

Add item to bill

Stockfile

display price
and item

description on
display

You will have studied airline reservation and library cataloguing systems in chapter 2. Construct
systems flowcharts for these processes.

Common real time processing tasks

Real time systems are a type of online processing system in which the processing is fast - the
input data is processed quickly enough to affect the next output of the system. Usually such
systems collect their data through sensors (automatic data entry). A typical example is a system
which monitors a nuclear plant's reactor core. In some reactors a set of rods is inserted into the
core to damp the nuclear reaction. When this is done, a warning is sent via a communications
system to the control room. This situation might be represented as follows:

Figure: 8.11

Compare to
required

temperature

385



The Case Study

Activity

You will have studied air traffic control and patient monitoring systems in chapter 3. Construct
systems flowcharts for these processes.

Further exercises on systems flow charts are found below.

INTEGRITY AND SECURITY OF DATA
In chapter 3, the distinction was made between the security and integrity of data.

The security of data refers to keeping it safe from accidental or deliberate loss by unauthorised
persons. This includes both physical security and software security as previously described.

The distinction may be made between security and safety of data in some texts - safety would
refer to the need for backup strategies to recover data after loss, however caused. In the IE guide
it appears that integrity is used to mean maintaining the safety of data. This would cover
strategies for backing up and recovering data.

These measures of integrity and security are vital to companies holding data and in many
countries of the world are a legal requirement.

There are many disturbing (and well-documented) stories of the ease with which students and the
like (malcontents, rebels, hackers, freaks etc.) can break into systems which are supposedly
secure (including banking and military computer systems). The implications for safe-keeping of
personal data are extensive (e.g. it would be possible for a malicious hacker to alter medical and
financial data on people thus preventing them from getting work or opening a bank account etc).

EXERCISE 8.6

1. The Medical Case study describes the process of stock control in a hospital. Identify one
(different) field in each record which could be changed by a user of the system attempting
to steal drugs.

2. Explain two precautions the hospital could take to help ensure the security of drug data.

3. When drugs are taken out of store, the transaction is recorded on a disc file which is then
used to update the master stock file. Explain why this transaction file is kept.

aaaaaaaaaaaa ••

RELIABILITY OF SYSTEMS
The reliability of any system is only as good as the data that is entered. The correctness of data in
a system may be described as the 'integrity' of the data. As systems become more complex and
autonomous (making key decisions on software-based rules) then mistakes can happen, with
serious consequences.

An X-ray machine that is designed to emit X-rays at a given power for use in a cancer treatment
process can be computer controlled. If, due to a data entry error, the dose of radiation is entered
wrongly, a patient could be killed or, at least, badly burnt.

Closer to home, students would probably like to be sure that their grades are correctly entered
into whatever computer system the school is using. These grades may be used to write reports,
which, in tum, may be used to write university, college and employment references. Thus an
incorrect grade could have a direct impact on the future of a student.

386



Computer Science

When the systems are actually in place and running, the consequences of hardware or other
system failures has also to be taken into account. It is not too serious if a bank mainframe
computer goes offline for a short time, the transactions can be recorded on disc or even on paper
and entered into master files later. However, as mentioned previously, systems like air traffic
control and the monitoring of a nuclear power plant cannot fail and therefore two complete
systems operate in parallel in case one fails. In extreme cases, a triple system may even be used.

EXERCISE 8.7
1. The Weather Case study describes the process of data collection for input into weather

models. Discuss the implications of mistakes being made in collection or transmission of
the raw data.

2. A hospital has medical records on paper and is transferring them into a new computer
system. Discuss the importance of transferring these records correctly.

3. Two systems described in the hospital case study are patient monitoring and stock control
of drugs. Compare the importance of the reliability of each of these systems.

4. In the 'Big Brother' case study, many attempts to obtain private data about people were
described. Explain three implications for surfers of a company obtaining inaccurate data.

5. In the CAD/CAM case study, computer programs were written to control the operation of
industrial machines. Compare two situations in which a programming error might have
serious consequences.

sssss .

THE CASE STUDIES
An effective way to use the case studies is given in the following exercise:

EXERCISE 8.8
For this exercise you will need

• One of the case studies.

• The Objectives and Action Verbs from the Subject Guide page.

• The Common Core Assessment Statements pages.

Different action verbs are used for different objectives. Each assessment statement has an
associated objective.

Using action verbs appropriate to each assessment statement, construct questions and mark
schemes on each listed topic that are appropriate to each case study. This work is best carried out
in pairs or small groups.

This exercise is intended to familiarise students with:

• The meaning and significance of the action verbs.

• The breadth of the syllabus common core.

387



The Case Study

• The nature of the case study.

Examination question structure.

The questions and mark schemes which are generated can be distributed to all students as a
revision aid.

This exercise need not be carried out after the complete common core has been covered but could
be done after each section of the programme has been covered. This would ensure that the
appropriate Case Study has been thoroughly read by the end of the course.

A slightly different approach could be to have groups of students investigate different aspects of
each case study (e.g. hardware aspects, network implications, data structures, security and
integrity of data, etc.) and then present their findings to the rest of the class .

• <•••.·.••<.i•••<•••i ••<•••...•<••.•..·•..• .•••

FURTHER EXERCISES 8.9

1. In the Banking case study, there is an article describing a retinal scan system which could
potentially be used to ensure security at an ATM.

a) State three input devices required for this system.
b) Outline the type of interface that would be used in this system.
c) Using the 4-point description given in the article, construct a systems flowchart to

describe the system.
d) Compare the security of the proposed system with that of using a PIN number

encrypted on the card.

2. One of the hospitals (hospital A) in the medical case study needs a delivery of drugs. An
email request is sent to another hospital (hospital B) in the system. The email request is
entered into a transaction file which is then used to update the stock master file. A printed
record of the transaction is made and the drugs are removed from store at hospital Band
sent by van to hospital A.

a) Construct a data flow diagram of this process.
b) Construct a systems flow chart of this process.

3. In the weather case study, weather data is used from the National Weather Service; this
data is in METAR format.

a) Explain why this format is unsuitable for presentation in newspapers, on radio and
on television.

b) Explain why this format is suitable for processing by a computer system.
c) Discuss the suitability of different types of output from a computer system that

could be used for presenting weather data using newspapers, radio and television.•••.••<.<.•.•..••..•..•.•..•

[Chapter I discusses the possible social, economic, political and cultural aspects of technology as
well as current tends in technology. The following exercises address these themes in the context
of different case studies.

388



Computer Science

EXERCISE 8.10

1. The banking case study identifies many social effects of the introduction of modem
computer systems (article 3, p 6).

Identify two benefits and two disadvantages to:

a) the bank employees.
b) the bank customers.
c) the bank owners or shareholders.

2. The Big Brother case study details attempts by companies to obtain data on individuals.
This is also an activity conducted by most governments (whether in the 'free' world or
otherwise) .

Outline two benefits and two disadvantages to citizens of this type of activity.

3. The CAD/CAM case study details some of the effects of globalisation with regard to
mass-production of goods.

Explain one benefit and one difficulty created by the advent of CAD/CAM systems for:

a) developed countries.
b) less-developed countries.
c) consumers.

389



The Case Study

390



.-----------'---------
Chapter contents

9.1 The Dossier

391

Computer Science



The Dossier

9.1 THE DOSSIER
INTRODUCTION
The IE Computer Science programme allocates 35% of the final grade to the dossier project. It is
a significant piece of work and requires a suitable amount of time to be devoted to it. At Standard
Level, 25 hours teaching time is expected to be devoted to the dossier and 35 hours at Higher
Level. This is in addition to any time spent on teaching the programming concepts outlined in
Topic 2 and further work outside the classroom would normally be expected of students.

The dossier is probably the largest single piece of design and programming you will have tackled
in Computer Science and, perhaps, in any subject. It is therefore very important to be organized
and to stick to the deadlines set by your teacher.

Many students make the mistake of thinking that the dossier is only about programming and
spend all their time developing a (quite possibly brilliant) program. Unfortunately, many of the
marks available are for analysis, design, testing and evaluation so even a brilliant program will
only score approximately 25% of the available marks without proper attention to these criteria.
Usually the other criteria are sadly neglected by students in a rush to start programming.

It is very important to remember, right from the start, that the examiner only sees what you have
written down. The fact that you have discussed data structures at length with your teacher will not
score any marks until you have the discussion written down as part of your dossier.

DOSSIER STRUCTURE
This is a summary of what should be contained within the dossier for each assessment criterion.
The actual structure is given in the subject guide. The IE publishes Teacher Support Material that
exemplifies the contents of each section together with examples from student dossiers. This
should be available in early 2005.

The 'new look' dossier now has 4 major sections:

Stage Criteria
Maximum

Corresponds in old program
award

A Analysis
Al Analysing the

4 A Analysing the Problem
Problem

A2 Criteria for
4

Success
none

A3 Prototype
4 none

Solution

12

B Detailed Bl Data
4 C Data Structures

Design Structures

B2 Algorithms 4 B Documenting the Design Process

B3 Modular
4

Organisation

12

392



Computer Science

Stage Criteria
Maximum

Corresponds in old program
award

CThe
Cl Using Good

Program
Programming 3 J Using Good Programming Style
Style

C2 Usability 3
G Incorporating User Friendly
Features

C3 Handling
3 H Handling Errors

errors

C4 Success of the
3 I Implementing the Program

Program

12

D D1 Annotated
F Including an Annotated Hard Copy

Documenta Hard Copy ofTest 4
tion Output

of Test Output

D2 Evaluating
4 K Evaluating Solutions

Solutions

D3 Including
User 3 L Including User Documentation
Documentation

11

This makes a total of 47 and there are a further 3 marks to be awarded for a student's 'Holistic
apporoach to the dossier' which are at the teacher's discretion.

The new total of 50 marks will give more 'granularity' in the application of descriptors (i.e. it
should make it easier for teachers to award appropriate marks) and will be scaled back to 35.

The most significant changes here are the move to a requirement for a real user and the
development of a prototype solution to show to that user. The intention is to provide more
flexibility and realism to the design process. Candidates are not then stuck with any particular
design methodology. Flexibility has also been introduced by allowing candidates to make their
own criteria for success rather than a strictly data-based test plan. Such a plan may well still
feature in many types of dossier.

More marks and more criteria should not necessarily mean more work for candidates. The
organisation of the dossier will be different. As a rough and ready guide it should still be possible
to complete an SL dossier in 40 pages or so of 'normal' quality writing, and 60 - 80 pages for HL.
A lot depends on the type of problem tackled, of course.

STACiE A: ANALYSIS
This section should concentrate on the problem and not the program to be written. Dossiers which
begin "I was asked by my teacher to write a program to solve a maze" are almost always

393



The Dossier

unsuitable because the problem (solving a maze) has not been considered as a problem, only
viewed as a computer program to be written.

The use of some analysis tools is recommended, not only will this improve the dossier, it will also
help the students understand this topic for the theory examination.

In addition, there is now a requirement for a real user to be involved in the project. While this
could pose difficulties for some candidates, particularly in isolated areas, the user could be a
person close to the candidate (a parent or colleague for example). At the analysis stage, after a
prototype of the solution has been produced, the candidate is expected to obtain feedback from
this user.

The prototype itself can take many forms and need not be functional. For example, the end user
can be shown a mock up of a data entry screen and be asked to comment on it. The candidate
would then refine the solution based on such a discussion. This approach ought to engage the
candidate in more practical, less abstract, issues related to the design of computer systems.

Students could tackle this objective in several sections. For example:

Problem definition and analysis could include:

• Sample data.

• Client user requests.

• Other previous solutions.

Specific objectives of the solution, by which we mean:

• The goals being set.

• Definition of input and output data.

• Processing required.

This section will help the student to think about the data capture screen(s) required, the data
structures which will be needed and the main modules of the solution.

Analytical tools. For example:

• Data flow diagrams.

• Use case scenarios.

• Screen designs.

There are many different types of tool that can be used by students. None of them are required by
the assessment criteria for the dossier. However, choosing one such method is often more
effective than text descriptions alone.

STAGE B: DETAILED DESIGN
The first criterion is 'data structures', although, logically, this need not be the first design step.
Candidates should not see design as a single once-through process. There should be some thought
put into the process of selecting algorithms and data structures that work together to achieve the
desired result.

394



Computer Science

This section is an opportunity for students to put theory into practice. They should have learnt
about many different types of data structure before attempting the dossier and should be able to
discuss which ones are most suitable for the solution they have chosen. A good discussion should
include consideration of the data structures that were not used as well as those finally selected.

The IE subject guide makes it clear that diagrams must be included for this section. Also required
are sample data from the problem and, ideally, a discussion of those data structures included to
achieve mastery aspects (such as arrays or records at Standard Level and linked lists or binary
trees at Higher Level).

The subject guide refers to the algorithms that the candidate uses in the solution and these can be
presented in many ways. Java code would not be expected at this stage. Candidates may have
chosen a procedural approach (more likely for SL than HL candidates) or an Object-Based or
Object-Oriented solution, or even some mixture of these approaches. The criteria call for three
items:

• The data structures.

• The algorithms.

• The modules.

The criteria are written is such a way that the modules could be classes or methods of a single
large object.

Descriptions of modules and algorithms can be in diagram or text form or some other mixed form
such as CRC cards or UML diagrams, Use Case Scenarios, Data flow diagrams, even (shudder)
flow charts. Key features should be:

• clearly identified modules.

• connections/data flow between modules.

• interior structure (data structures/algorithms).

It is likely that candidates will start to program and then realize the limitations of parts of their
design approach. This is expected, even anticipated, by the revised criteria as candidates may
depart from their original design ideas at the programming stage 'without penalty'.

STAGEC: THE PROGRAM
Teachers will probably be pleased that more marks have been allocated to this section although
the dossier is still not a coding exercise but a problem-solving activity.

Code will be assessed in terms of its overall readability or 'programming style' as for the old
criterion J. The required elements of style are:

• Abundant comments (preferably colour coded).

• Meaningful variable names.

• Consistent indentation.
• Clear, simple syntax.

• Highlighting of code for emphasis of code ownership, mastery factors, library routines etc.

395



The Dossier

It is an excellent idea for candidates to improve readability by presenting code listings in
landscape form.

This section also includes the candidate's approach to user-friendliness (Usability issues) and
robustness (error handling capabilities). All of these features are important in program
developement and implementation.

Usability refers to helpful instructions for the user and to the way interfaces are designed (be they
text menus or windows-style interfaces). Candidates should aim to document all such user­
friendly features by:

• supplying the code that produced them.

and

• annotating the relevant hard copy print out.

Annotations are most easily done by hand.

Handling errors refers to code that is used to detect and, if applicable, correct any data input or
runtime errors (e.g. avoiding division by zero, or checking that a file exists before opening it).
This can be shown by annotating relevant code and reproducing such code together with the error
messages produced as output.

Both C2 and C3 require separate sections in the dossier; it is not sufficient to include these
sections within test runs or code listings.

Section C4 allows the candidate to demonstrate that the program has achieved the objectives that
were set out at the start and to show that the program functions by referencing test runs. Again,
this approach allows much more flexibility than using one particular method, such as a test plan,
to measure success. For maximum marks, the solution will need to achieve all the objectives set
out during the analysis stage and the candidate will have to produce evidence that it does.

STAGE D: DOCUMENTATION
Sample runs should be produced that demonstrate all the aspects of your program. However, not
every data input test for every screen need be shown. The testing can be annotated by hand or
word-processed, but the teacher will have to confirm that the program actually produces the
results claimed by the candidate.

The testing should indicate that every branch of the program has been demonstrated to work and,
if appropriate, should include testing with valid and invalid data. There will be few programs that
do not require any data input at all.

At a minimum you need to describe the solution that you made. For the best marks you must:

• Discuss its effectiveness as a solution to the problem identified.

• Discuss the efficiency of the algorithms used.

• Suggest improvements which could be made.

A useful strategy is to compare, point by point, the aims you set out in section A with the way the
solution finally turned out.



Computer Science

There must be some form of simplified user manual (hard copy) which contains:

• details of hardware and software needed to load/run the application.

• instructions on installation and loading.

• sample screens to assist the user.

• examples of correct data input.

The award for Holistic approach to the dossier would normally be made by the teacher on the
basis of clear guidelines given to students. The issue here is how much commitment the candidate
shows in completing the dossier, which could be very subjective. To assist candidates gain a good
mark in this section teachers should clearly communicate their expectations as to intermediate
deadlines, the need for candidates to assist their colleagues, not by collaborative work (which is
forbidden) but by making useful suggestions as to how some aspects of other projects might be
tackled.

Candidates should be aware that teachers are free to add their own expectations to the list
provided by IB, for example, a teacher might require 'best use oflab time' as a criterion and
penalize candidates who are habitually late or frequently engaged in non-productive activities.

CHOICE OF PROBLEM
Some hints and tips:

• Problems should be open-ended so that they can be started small but expanded to fill the
available time. Games programs almost always fail this test.

• Problems should be 'real world' and have real users who have real problems where possible
- this makes investigation and analysis much easier. Games programs almost always fail this
test.

• Projects should clearly focus on the essential requirements - every proposed module and
feature should be put to the "does it enhance my chances of getting a good score?" test.
Programs with neat and nifty graphic interfaces are great fun to do but can really eat into
project time - and the examiner never sees them. Games programs almost always fail this
test.

• Try to avoid stating the problem as "you are to write a program which ... " but rather allow
exploration of various solutions to gain insight and improve your analysis of the problem.

It might seem that we are advising against games programs (that's because we are). We 'never'
allow our own students to do games programs - at least we do all that is in our power to stop
them. In our experience students will lose at least 25% of their potential marks simply because
they become involved with game-play aspects that do not impact their final project. There are
students who can complete successful games projects but they are 'one in a million' ,just like
lottery winners (no, that doesn't give you an idea for a dossier project!).

The website http://www.ib-computing.com has a list of suggested topics to help choose a good
problem.

397



The Dossier

Mastery of topics

This is not the same as simply using a technique in the source code. The justification for inclusion
of each mastery topic will be more convincing to the moderator when its use is justified and
appropriate. Such justification should appear in the data structures discussion as well (where
appropriate) .

It is a good idea to ask candidates to create an 'index' of mastery for their dossiers and for the
code listing. This will help them focus on the need to cover the appropriate aspects.

The lEO have made it much, much easier for students to choose a topic and then work in
appropriate masteries. Under the old program it might have been necessary to adapt a topic to
make the mastery factors fit. Nevertheless, students should still be prepared to explain how they
will gain the required masteries when giving an initial description of their project.

Finally

In the best of all possible worlds your project is a satisfying piece of work. Avoid stress by
sticking to deadlines, leaving yourself a realistic amount of time to complete everything. Best of
all, finish early and laugh at your poor friends. Have fun!

398



Computer Science
la aEnabled

1SBN-18165!Dll


	Computer Science Java Enabled
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8





